Randomized algorithms for fast computation of low rank tensor ring model

被引:19
作者
Ahmadi-Asl, Salman [1 ]
Cichocki, Andrzej [1 ,2 ]
Huy Phan, Anh [1 ]
Asante-Mensah, Maame G. [1 ]
Musavian Ghazani, Mirfarid [1 ]
Tanaka, Toshihisa [3 ]
Oseledets, Ivan [1 ]
机构
[1] Skolkovo Inst Sci & Technol SKOLTECH, CDISE, Moscow, Russia
[2] Nicolaus Copernicus Univ, PL-87100 Torun, Poland
[3] Tokyo Univ Agr & Technol, Tokyo, Japan
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 01期
关键词
Tensor Ring-Tensor Train (TR-TT) decompositions; randomized algorithm; random projection; MATRIX PRODUCT STATES; LARGE-SCALE MATRICES; RENORMALIZATION-GROUP; APPROXIMATION; DECOMPOSITION; OPTIMIZATION; COMPLETION; NETWORKS; REDUCTION;
D O I
10.1088/2632-2153/abad87
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Randomized algorithms are efficient techniques for big data tensor analysis. In this tutorial paper, we review and extend a variety of randomized algorithms for decomposing large-scale data tensors in Tensor Ring (TR) format. We discuss both adaptive and nonadaptive randomized algorithms for this task. Our main focus is on the random projection technique as an efficient randomized framework and how it can be used to decompose large-scale data tensors in the TR format. Simulations are provided to support the presentation and efficiency, and performance of the presented algorithms are compared.
引用
收藏
页数:21
相关论文
共 115 条