Randomized algorithms for fast computation of low rank tensor ring model

被引:20
作者
Ahmadi-Asl, Salman [1 ]
Cichocki, Andrzej [1 ,2 ]
Huy Phan, Anh [1 ]
Asante-Mensah, Maame G. [1 ]
Musavian Ghazani, Mirfarid [1 ]
Tanaka, Toshihisa [3 ]
Oseledets, Ivan [1 ]
机构
[1] Skolkovo Inst Sci & Technol SKOLTECH, CDISE, Moscow, Russia
[2] Nicolaus Copernicus Univ, PL-87100 Torun, Poland
[3] Tokyo Univ Agr & Technol, Tokyo, Japan
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 01期
关键词
Tensor Ring-Tensor Train (TR-TT) decompositions; randomized algorithm; random projection; MATRIX PRODUCT STATES; LARGE-SCALE MATRICES; RENORMALIZATION-GROUP; APPROXIMATION; DECOMPOSITION; OPTIMIZATION; COMPLETION; NETWORKS; REDUCTION;
D O I
10.1088/2632-2153/abad87
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Randomized algorithms are efficient techniques for big data tensor analysis. In this tutorial paper, we review and extend a variety of randomized algorithms for decomposing large-scale data tensors in Tensor Ring (TR) format. We discuss both adaptive and nonadaptive randomized algorithms for this task. Our main focus is on the random projection technique as an efficient randomized framework and how it can be used to decompose large-scale data tensors in the TR format. Simulations are provided to support the presentation and efficiency, and performance of the presented algorithms are compared.
引用
收藏
页数:21
相关论文
共 115 条
[1]   Unsupervised Multiway Data Analysis: A Literature Survey [J].
Acar, Evrim ;
Yener, Buelent .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (01) :6-20
[2]   Database-friendly random projections: Johnson-Lindenstrauss with binary coins [J].
Achlioptas, D .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 66 (04) :671-687
[3]  
Affleck I., 1988, CONDENS MATTER PHYS, P253
[4]  
Ahmadi-Asl S., 2020, ARXIV200107124
[5]   Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes [J].
Ailon, Nir ;
Liberty, Edo .
DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) :615-630
[6]   Tensor decompositions for feature extraction and classification of high dimensional datasets [J].
Anh Huy Phan ;
Ciehoeki, Andrzej .
IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2010, 1 (01) :37-68
[7]  
[Anonymous], 2018, ARXIV180701589
[8]  
[Anonymous], Tensor network
[9]  
[Anonymous], 2019, Advances in Neural Information Processing Systems
[10]  
[Anonymous], 2016, CoRR, abs/1606.05535