Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity

被引:45
作者
Tomovski, Zivorad [1 ]
Pogany, Tibor K. [2 ]
Srivastava, H. M. [3 ]
机构
[1] Univ St Cyril & Methodius, Fac Nat Sci & Math, Inst Math, MK-1000 Skopje, North Macedonia
[2] Univ Rijeka, Fac Maritime Studies, HR-51000 Rijeka, Croatia
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2014年 / 351卷 / 12期
关键词
DIFFUSION; EQUATION;
D O I
10.1016/j.jfranklin.2014.09.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we derive a Laplace type integral expression for the function e(alpha,beta)(gamma) (t; lambda) defined by e(alpha,beta)(gamma)(t; lambda) := t(beta-1)E(alpha,beta)(gamma)(-lambda t(alpha)), where E-alpha,beta(gamma)(z) stands for the generalized three-parameter Mittag-Leffier function occurring in many interesting applied problems involving fractional differential equations. Our result is shown to enable us to extend certain findings by Mainardi (2010) [21] and others. As an application of the obtained Laplace type integral representation, we prove the complete monotonicity of the function e(alpha,beta)(gamma) (t; lambda). We also establish several related positivity results and some uniform upper bounds for the function e(alpha,beta)(gamma) (t; lambda). (C) 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5437 / 5454
页数:18
相关论文
共 46 条
[1]  
[Anonymous], 1975, Potential Theory on Locally Compact Abelian Groups
[2]  
[Anonymous], BOUNDARY VALUE PROBL
[3]   Alternative Forms of Compound Fractional Poisson Processes [J].
Beghin, Luisa ;
Macci, Claudio .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[4]  
Bleistein N., 1986, ASYMPTOTIC EXPANSION
[5]   Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics [J].
de Oliveira, E. Capelas ;
Mainardi, F. ;
Vaz, J., Jr. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :161-171
[6]  
Erdelyi A., 1953, Higher transcendental functions, V2
[7]   Hilfer-Prabhakar derivatives and some applications [J].
Garra, Roberto ;
Gorenflo, Rudolf ;
Polito, Federico ;
Tomovski, Zivorad .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :576-589
[8]  
Gholami M., 2011, Int. J. Contemp. Math. Sci., V6, P735
[9]  
Gorenflo R., 2005, Journal of Physics: Conference Series, V7, P1, DOI 10.1088/1742-6596/7/1/001
[10]  
Gorenflo R, 1998, PROCEEDINGS OF THE EIGHTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, P195