Network curvature as a hallmark of brain structural connectivity

被引:45
作者
Farooq, Hamza [1 ]
Chen, Yongxin [2 ]
Georgiou, Tryphon T. [3 ]
Tannenbaum, Allen [4 ,5 ]
Lenglet, Christophe [6 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[3] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92717 USA
[4] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[5] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[6] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN USA
基金
美国国家卫生研究院;
关键词
AGE-RELATED-CHANGES; METRIC-MEASURE-SPACES; RICCI CURVATURE; FUNCTIONAL CONNECTIVITY; CEREBRAL-CORTEX; DIFFUSION MRI; AUTISM; SPECTRUM; DORSAL;
D O I
10.1038/s41467-019-12915-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although brain functionality is often remarkably robust to lesions and other insults, it may be fragile when these take place in specific locations. Previous attempts to quantify robustness and fragility sought to understand how the functional connectivity of brain networks is affected by structural changes, using either model-based predictions or empirical studies of the effects of lesions. We advance a geometric viewpoint relying on a notion of network curvature, the so-called Ollivier-Ricci curvature. This approach has been proposed to assess financial market robustness and to differentiate biological networks of cancer cells from healthy ones. Here, we apply curvature-based measures to brain structural networks to identify robust and fragile brain regions in healthy subjects. We show that curvature can also be used to track changes in brain connectivity related to age and autism spectrum disorder (ASD), and we obtain results that are in agreement with previous MRI studies.
引用
收藏
页数:11
相关论文
共 75 条
[1]   Repetitive behaviors in autism are linked to imbalance of corticostriatal connectivity: a functional connectivity MRI study [J].
Abbott, Angela E. ;
Linke, Annika C. ;
Nair, Aarti ;
Jahedi, Afrooz ;
Alba, Laura A. ;
Keown, Christopher L. ;
Fishman, Inna ;
Mueller, Ralph-Axel .
SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2018, 13 (01) :32-42
[2]   Brain networks under attack: robustness properties and the impact of lesions [J].
Aerts, Hannelore ;
Fias, Wim ;
Caeyenberghs, Karen ;
Marinazzo, Daniele .
BRAIN, 2016, 139 :3063-3083
[3]   Modeling the Impact of Lesions in the Human Brain [J].
Alstott, Jeffrey ;
Breakspear, Michael ;
Hagmann, Patric ;
Cammoun, Leila ;
Sporns, Olaf .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (06)
[4]  
[Anonymous], 1999, Current Developments in Mathematics
[5]   The architecture of complex weighted networks [J].
Barrat, A ;
Barthélemy, M ;
Pastor-Satorras, R ;
Vespignani, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (11) :3747-3752
[6]  
Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
[7]  
2-O
[8]  
Bauer F, 2012, MATH RES LETT, V19, P1185
[9]   MRI Findings in 77 Children with Non-Syndromic Autistic Disorder [J].
Boddaert, Nathalie ;
Zilbovicius, Monica ;
Philipe, Anne ;
Robel, Laurence ;
Bourgeois, Marie ;
Barthelemy, Catherine ;
Seidenwurm, David ;
Meresse, Isabelle ;
Laurier, Laurence ;
Desguerre, Isabelle ;
Bahi-Buisson, Nadia ;
Brunelle, Francis ;
Munnich, Arnold ;
Samson, Yves ;
Mouren, Marie-Christine ;
Chabane, Nadia .
PLOS ONE, 2009, 4 (02)
[10]  
Brewer AA, 2016, UPDATE ON DEMENTIA, P273, DOI 10.5772/64562