Euler sums of hyperharmonic numbers

被引:32
|
作者
Dil, Ayhan [1 ]
Boyadzhiev, Khristo N. [2 ]
机构
[1] Akdeniz Univ, Dept Math, TR-07058 Antalya, Turkey
[2] Ohio Univ, Dept Math & Stat, Ada, OH 45810 USA
关键词
Riemann zeta function; Hurwitz zeta function; Euler sums; Harmonic and hyperharmonic numbers; Stirling numbers; Beta function;
D O I
10.1016/j.jnt.2014.07.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The hyperharmonic numbers h(n)((r)) are defined by means of the classical harmonic numbers. We show that the Euler-type sums with hyperharmonic numbers: sigma(r, m) = Sigma(infinity)(n=1) h(n)((r))/n(m) can be expressed in terms of series of Hurwitz zeta function values. This is a generalization of a result of Mezo and Dil (2010) [7]. We also provide an explicit evaluation of sigma(r, m) in a closed form in terms of zeta values and Stirling numbers of the first kind. Furthermore, we evaluate several other series involving hyperharmonic numbers. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:490 / 498
页数:9
相关论文
共 50 条
  • [41] Summation formulas of hyperharmonic numbers with their generalizations
    Komatsu, Takao
    Li, Rusen
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [42] Some identities on degenerate hyperharmonic numbers
    Kim, Taekyun
    San Kim, Dae
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (02) : 255 - 262
  • [43] Multiple hyperharmonic-star numbers
    Zheng, Wenxuan
    Yang, Ying
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024,
  • [44] A symmetric algorithm for hyperharmonic and Fibonacci numbers
    Dil, Ayhan
    Mezo, Istvan
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) : 942 - 951
  • [45] Almost all hyperharmonic numbers are not integers
    Goral, Haydar
    Sertbas, Doga Can
    JOURNAL OF NUMBER THEORY, 2017, 171 : 495 - 526
  • [46] On shifted Mascheroni series and hyperharmonic numbers
    Coppo, Marc-Antoine
    Young, Paul Thomas
    JOURNAL OF NUMBER THEORY, 2016, 169 : 1 - 20
  • [47] A q-analog of the hyperharmonic numbers
    Mansour, Toufik
    Shattuck, Mark
    AFRIKA MATEMATIKA, 2014, 25 (01) : 147 - 160
  • [48] Identities involving harmonic and hyperharmonic numbers
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2013
  • [49] Summation formulas of hyperharmonic numbers with their generalizations
    Takao Komatsu
    Rusen Li
    Afrika Matematika, 2023, 34
  • [50] Euler-Type Sums Involving Harmonic Numbers and Binomial Coefficients
    Wu, Qiong
    Xu, Ce
    Zhou, Jianing
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (06)