Euler sums of hyperharmonic numbers

被引:32
|
作者
Dil, Ayhan [1 ]
Boyadzhiev, Khristo N. [2 ]
机构
[1] Akdeniz Univ, Dept Math, TR-07058 Antalya, Turkey
[2] Ohio Univ, Dept Math & Stat, Ada, OH 45810 USA
关键词
Riemann zeta function; Hurwitz zeta function; Euler sums; Harmonic and hyperharmonic numbers; Stirling numbers; Beta function;
D O I
10.1016/j.jnt.2014.07.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The hyperharmonic numbers h(n)((r)) are defined by means of the classical harmonic numbers. We show that the Euler-type sums with hyperharmonic numbers: sigma(r, m) = Sigma(infinity)(n=1) h(n)((r))/n(m) can be expressed in terms of series of Hurwitz zeta function values. This is a generalization of a result of Mezo and Dil (2010) [7]. We also provide an explicit evaluation of sigma(r, m) in a closed form in terms of zeta values and Stirling numbers of the first kind. Furthermore, we evaluate several other series involving hyperharmonic numbers. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:490 / 498
页数:9
相关论文
共 50 条
  • [31] AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES
    Bahsi, Mustafa
    Solak, Suleyman
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 387 - 393
  • [32] Divisibility properties of hyperharmonic numbers
    H. Göral
    D. C. Sertbaş
    Acta Mathematica Hungarica, 2018, 154 : 147 - 186
  • [33] A new generalization of hyperharmonic numbers
    Dagli, Muhammet Cihat
    ANNALES POLONICI MATHEMATICI, 2022, : 17 - 24
  • [34] Riordan arrays and hyperharmonic numbers
    Wuyungaowa
    ARS COMBINATORIA, 2017, 132 : 81 - 91
  • [35] On the harmonic and hyperharmonic Fibonacci numbers
    Naim Tuglu
    Can Kızılateş
    Seyhun Kesim
    Advances in Difference Equations, 2015
  • [36] Divisibility properties of hyperharmonic numbers
    Goral, H.
    Sertbas, D. C.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (01) : 147 - 186
  • [37] Computation of Euler's type sums of the products of Bernoulli numbers
    Petojevic, Aleksandar
    Srivastava, H. M.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (05) : 796 - 801
  • [38] On sums with generalized harmonic numbers via Euler's transform
    Omur, Nese
    Koparal, Sibel
    Elkhir, Laid
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (04) : 695 - 704
  • [39] Some evaluations of parametric Euler type sums of harmonic numbers
    Quan, Junjie
    Xu, Ce
    Zhang, Xixi
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (02) : 162 - 179
  • [40] Identities involving harmonic and hyperharmonic numbers
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,