Fabrication and characterization of periodically poled lithium niobate single crystal fibers

被引:0
|
作者
Lu, Yalin [1 ]
Iyad, Dajani A. [1 ]
Knize, R. J. [1 ]
机构
[1] USAF Acad, LORC, Dept Phys, Colorado Springs, CO 80840 USA
关键词
domain structure; nonlinear optics; single crystal fiber; lithium niobate; frequency conversion; quasi-phase matching;
D O I
10.1080/10584580601099116
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The nonlinear frequency conversion approach remains as the dominant approach to generate new laser wavelengths that are hardly achievable via regular lasing techniques relying on population inversion. Increasing either a media's optical nonlinearity or the power density of a fundamental beam or increasing both at the same time is believed to be very effective in order to enhance the nonlinear conversion efficiency. In this research, periodic ferroelectric domain structure was introduced into lithium niobate single crystal fibers by electrical poling, which then allows simultaneous use of efficient quasi-phase matching (QPM) method and strong optical confinement inside an optical fiber guide. The introduced periodic domain structures were revealed using a crossly polarized optical microscope (CPOM) and a confocal scanning optical microscope (CSOM) for quality assurance. Efficient second-harmonic generation (SHG) characterization was also performed using such fibers.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [41] Mode behavior of second harmonic wave in a ridge-type periodically poled lithium niobate waveguide
    Park, Jun-Hee
    Kim, Woo-Kyung
    Jeong, Woo-Jin
    Song, Myung-Gun
    Kim, Hun-Hwa
    Koo, Kyung-Hwan
    Lee, Ju-Han
    Lee, Han-Young
    QUANTUM AND NONLINEAR OPTICS, 2010, 7846
  • [42] Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate
    Chang, KW
    Chiang, AC
    Lin, TC
    Wong, BC
    Chen, YH
    Huang, YC
    OPTICS COMMUNICATIONS, 2002, 203 (1-2) : 163 - 168
  • [43] Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators
    Myers, LE
    Bosenberg, WR
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (10) : 1663 - 1672
  • [44] Experimental Study of Periodically Poled Piezoelectric Film Lithium Niobate Resonator at Cryogenic Temperatures
    Kramer, Jack
    Barrera, Omar
    Cho, Sinwoo
    Chulukhadze, Vakhtang
    Hsu, Tzu-Hsuan
    Lu, Ruochen
    2024 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, IMS 2024, 2024, : 154 - 157
  • [45] Retiming of Short Pulses Using Quadratic Cascading in a Periodically Poled Lithium Niobate Waveguide
    Liu, Sheng
    Lee, Kwang Jo
    Parmigiani, Francesca
    Gallo, Katia
    Petropoulos, Periklis
    Richardson, David J.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (02) : 94 - 96
  • [46] Acoustic resonator based on periodically poled transducers: Fabrication and characterization
    Bassignot, F.
    Courjon, E.
    Ulliac, G.
    Ballandras, S.
    Lesage, J. -M.
    Petit, R.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (07)
  • [47] Wavelength conversion in periodically poled lithium niobate waveguides exploiting cascaded second order nonlinearity χ(2):χ(2)
    Bozzetti, M
    D'Orazio, A
    De Sario, M
    Petruzzelli, V
    Prudenzano, F
    MELECON 2000: INFORMATION TECHNOLOGY AND ELECTROTECHNOLOGY FOR THE MEDITERRANEAN COUNTRIES, VOLS 1-3, PROCEEDINGS, 2000, : 261 - 264
  • [48] Widely tunable continuous-wave solid-state red laser source using periodically-poled lithium niobate
    Sundheimer, M
    Sennaroglu, A
    SELECTED PAPERS FROM PHOTONICS INDIA '98, 1999, 3666 : 339 - 342
  • [49] Pulsed optical parametric generation, amplification, and oscillation in monolithic periodically poled lithium niobate crystals
    Chiang, AC
    Wang, TD
    Lin, YY
    Lau, CW
    Chen, YH
    Wong, BC
    Huang, YC
    Shy, JT
    Lan, YP
    Chen, YF
    Tsao, PH
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (06) : 791 - 799
  • [50] Non-collinear efficient continuous optical frequency doubling in periodically poled lithium niobate
    X. Deng
    H. Ren
    H. Lao
    X. Chen
    Applied Physics B, 2010, 100 : 755 - 758