The challenging interpretation of instrumental variable estimates under monotonicity

被引:47
作者
Swanson, Sonja A. [1 ,2 ]
Hernan, Miguel A. [2 ,3 ,4 ]
机构
[1] Erasmus MC, Dept Epidemiol, POB 2040, NL-3000 CA Rotterdam, Netherlands
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[4] Harvard Mit Div Hlth Sci & Technol, Boston, MA USA
基金
美国国家卫生研究院; 欧盟地平线“2020”;
关键词
Monotonicity; local average treatment effect; complier average causal effect; instrumental variable; CAUSAL INFERENCE; MODELS; BOUNDS;
D O I
10.1093/ije/dyx038
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Instrumental variable (IV) methods are often used to identify 'local' causal effects in a subgroup of the population of interest. Such 'local' effects may not be ideal for informing clinical or policy decision making. When the instrument is non-causal, additional difficulties arise for interpreting 'local' effects. Little attention has been paid to these difficulties, even though commonly proposed instruments in epidemiology are non-causal (e.g. proxies for physician's preference; genetic variants in some Mendelian randomization studies). Methods: For IV estimates obtained from both causal and non-causal instruments under monotonicity, we present results to help investigators pose four questions about the local effect estimates obtained in their studies. (1) To what subgroup of the population does the effect pertain? Can we (2) estimate the size of or (3) describe the characteristics of this subgroup relative to the study population? (4) Can the sensitivity of the effect estimate to deviations from monotonicity be quantified? Results: We show that the common interpretations and approaches for answering these four questions are generally only appropriate in the case of causal instruments. Conclusions: Appropriate interpretation of an IV estimate under monotonicity as a 'local' effect critically depends on whether the proposed instrument is causal or non-causal. The results and formal proofs presented here can help in the transparent reporting of IV results and in enhancing the use of IV estimates in informing decision-making efforts.
引用
收藏
页码:1289 / 1297
页数:9
相关论文
共 30 条
  • [11] Deaton A., 2009, INSTRUMENTS DEV RAND
  • [12] Assumptions of IV Methods for Observational Epidemiology
    Didelez, Vanessa
    Meng, Sha
    Sheehan, Nuala A.
    [J]. STATISTICAL SCIENCE, 2010, 25 (01) : 22 - 40
  • [13] Local instrumental variables and latent variable models for identifying and bounding treatment effects
    Heckman, JJ
    Vytlacil, EJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (08) : 4730 - 4734
  • [14] Instruments for causal inference -: An epidemiologist's dream?
    Hernán, MA
    Robíns, JM
    [J]. EPIDEMIOLOGY, 2006, 17 (04) : 360 - 372
  • [15] Rejoinder
    Imbens, Guido
    [J]. STATISTICAL SCIENCE, 2014, 29 (03) : 375 - 379
  • [16] IDENTIFICATION AND ESTIMATION OF LOCAL AVERAGE TREATMENT EFFECTS
    IMBENS, GW
    ANGRIST, JD
    [J]. ECONOMETRICA, 1994, 62 (02) : 467 - 475
  • [17] Principal Stratification and Attribution Prohibition: Good Ideas Taken Too Far
    Joffe, Marshall
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2011, 7 (01)
  • [18] Analysis of protein-coding genetic variation in 60,706 humans
    Lek, Monkol
    Karczewski, Konrad J.
    Minikel, Eric V.
    Samocha, Kaitlin E.
    Banks, Eric
    Fennell, Timothy
    O'Donnell-Luria, Anne H.
    Ware, James S.
    Hill, Andrew J.
    Cummings, Beryl B.
    Tukiainen, Taru
    Birnbaum, Daniel P.
    Kosmicki, Jack A.
    Duncan, Laramie E.
    Estrada, Karol
    Zhao, Fengmei
    Zou, James
    Pierce-Hollman, Emma
    Berghout, Joanne
    Cooper, David N.
    Deflaux, Nicole
    DePristo, Mark
    Do, Ron
    Flannick, Jason
    Fromer, Menachem
    Gauthier, Laura
    Goldstein, Jackie
    Gupta, Namrata
    Howrigan, Daniel
    Kiezun, Adam
    Kurki, Mitja I.
    Moonshine, Ami Levy
    Natarajan, Pradeep
    Orozeo, Lorena
    Peloso, Gina M.
    Poplin, Ryan
    Rivas, Manuel A.
    Ruano-Rubio, Valentin
    Rose, Samuel A.
    Ruderfer, Douglas M.
    Shakir, Khalid
    Stenson, Peter D.
    Stevens, Christine
    Thomas, Brett P.
    Tiao, Grace
    Tusie-Luna, Maria T.
    Weisburd, Ben
    Won, Hong-Hee
    Yu, Dongmei
    Altshuler, David M.
    [J]. NATURE, 2016, 536 (7616) : 285 - +
  • [19] Alcohol, ALDH2, and esophageal cancer: A meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach
    Lewis, SJ
    Smith, GD
    [J]. CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2005, 14 (08) : 1967 - 1971
  • [20] Nonparametric bounds for the causal effect in a binary instrumental-variable model
    Palmer, Tom M.
    Ramsahai, Roland R.
    Didelez, Vanessa
    Sheehan, Nuala A.
    [J]. STATA JOURNAL, 2011, 11 (03) : 345 - 367