Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations

被引:84
作者
Antolin, P. [1 ,2 ]
机构
[1] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[2] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
关键词
solar corona; solar prominences; coronal rain; thermal instability; thermal non-equilibrium; magnetohydrodynamics; MHD waves; AB-INITIO APPROACH; TRANSITION REGION; MAGNETIC RECONNECTION; PROMINENCE FORMATION; MOLECULAR-LOOPS; GAS-FLOWS; MODEL; CONDENSATION; SPECTROGRAPH; STABILITY;
D O I
10.1088/1361-6587/ab5406
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The complex interaction of the magnetic field with matter is the key to some of the most puzzling observed phenomena at multiple scales across the Universe, from tokamak plasma confinement experiments in the laboratory to the filamentary structure of the interstellar medium. A major astrophysical puzzle is the phenomenon of coronal heating, upon which the most external layer of the solar atmosphere, the corona, is sustained at multi-million degree temperatures on average. However, the corona also conceals a cooling problem. Indeed, recent observations indicate that, even more mysteriously, like snowflakes in the oven, the corona hosts large amounts of cool material termed coronal rain, hundreds of times colder and denser, that constitute the seed of the famous prominences. Numerical simulations have shown that this cold material does not stem from the inefficiency of coronal heating mechanisms, but results from the specific spatio-temporal properties of these. As such, a large fraction of coronal loops, the basic constituents of the solar corona, are suspected to be in a state of thermal non-equilibrium (TNE), characterised by heating (evaporation) and cooling (condensation) cycles whose telltale observational signatures are long-period intensity pulsations in hot lines and thermal instability-driven coronal rain in cool lines, both now ubiquitously observed. In this paper, we review this yet largely unexplored strong connection between the observed properties of hot and cool material in TNE and instability and the underlying coronal heating mechanisms. Focus is set on the long-observed coronal rain, for which significant research already exists, contrary to the recently discovered long-period intensity pulsations. We further identify the outstanding open questions in what constitutes a new, rapidly growing field of solar physics.
引用
收藏
页数:15
相关论文
共 135 条
  • [21] RADIATIVE LOSSES OF SOLAR CORONAL PLASMAS
    Colgan, J.
    Abdallah, J., Jr.
    Sherrill, M. E.
    Foster, M.
    Fontes, C. J.
    Feldman, U.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 689 (01) : 585 - 592
  • [23] Detailed comparison of downflows seen both in EIT 30.4 nm and Big Bear Hα movies
    De Groof, A
    Bastiaensen, C
    Müller, DAN
    Berghmans, D
    Poedts, S
    [J]. ASTRONOMY & ASTROPHYSICS, 2005, 443 (01) : 319 - 328
  • [24] Intensity variations in EIT shutterless mode: Waves or flows?
    De Groof, A
    Berghmans, D
    van Driel-Gesztelyi, L
    Poedts, S
    [J]. ASTRONOMY & ASTROPHYSICS, 2004, 415 (03): : 1141 - 1151
  • [25] The Interface Region Imaging Spectrograph (IRIS)
    De Pontieu, B.
    Title, A. M.
    Lemen, J. R.
    Kushner, G. D.
    Akin, D. J.
    Allard, B.
    Berger, T.
    Boerner, P.
    Cheung, M.
    Chou, C.
    Drake, J. F.
    Duncan, D. W.
    Freeland, S.
    Heyman, G. F.
    Hoffman, C.
    Hurlburt, N. E.
    Lindgren, R. W.
    Mathur, D.
    Rehse, R.
    Sabolish, D.
    Seguin, R.
    Schrijver, C. J.
    Tarbell, T. D.
    Wuelser, J. -P.
    Wolfson, C. J.
    Yanari, C.
    Mudge, J.
    Nguyen-Phuc, N.
    Timmons, R.
    van Bezooijen, R.
    Weingrod, I.
    Brookner, R.
    Butcher, G.
    Dougherty, B.
    Eder, J.
    Knagenhjelm, V.
    Larsen, S.
    Mansir, D.
    Phan, L.
    Boyle, P.
    Cheimets, P. N.
    DeLuca, E. E.
    Golub, L.
    Gates, R.
    Hertz, E.
    McKillop, S.
    Park, S.
    Perry, T.
    Podgorski, W. A.
    Reeves, K.
    [J]. SOLAR PHYSICS, 2014, 289 (07) : 2733 - 2779
  • [26] FORMATION, LEVITATION, AND STABILITY OF PROMINENCES IN THE MAGNETIZED SOLAR ATMOSPHERE
    DRAKE, JF
    MOK, Y
    VANHOVEN, G
    [J]. ASTROPHYSICAL JOURNAL, 1993, 413 (01) : 416 - 421
  • [27] EDLEN B, 1945, MON NOT R ASTRON SOC, V105, P323
  • [28] CORONAL RAIN IN MAGNETIC ARCADES: REBOUND SHOCKS, LIMIT CYCLES, AND SHEAR FLOWS
    Fang, X.
    Xia, C.
    Keppens, R.
    Van Doorsselaere, T.
    [J]. ASTROPHYSICAL JOURNAL, 2015, 807 (02)
  • [29] MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS
    Fang, X.
    Xia, C.
    Keppens, R.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2013, 771 (02)
  • [30] THE ROLE OF KELVIN-HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES
    Fang, Xia
    Yuan, Ding
    Xia, Chun
    Van Doorsselaere, Tom
    Keppens, Rony
    [J]. ASTROPHYSICAL JOURNAL, 2016, 833 (01)