PERTURBED NONLINEAR ELLIPTIC NEUMANN PROBLEMS INVOLVING ANISOTROPIC SOBOLEV SPACES WITH VARIABLE EXPONENTS

被引:3
作者
Ahmed, A. [1 ]
Vall, M. S. B. Elemine [2 ]
机构
[1] Univ Sidi Mohamed Ibn Abdellah, Fac Sci Dhar Mahraz, Dept Math, Lab LAMA, BP 1796, Atlas Fez, Morocco
[2] Univ Nouakchott, Profess Univ Inst Dept Math, Nouakchott, Mauritania
来源
MATEMATICHE | 2022年 / 77卷 / 02期
关键词
Ricceri's variational principle; Kirchhoff-type problem; Non-homogeneous operators; Elliptic problems; anisotropic variable exponent Lebesgue-Sobolev spaces; ELECTRORHEOLOGICAL FLUIDS; WEAK SOLUTIONS; EXISTENCE; EQUATIONS; FUNCTIONALS; EIGENVALUE; VIBRATION;
D O I
10.4418/2022.77.2.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the existence of infinitely many weak solutions of the following perturbed Kirchhoff-type non-homogeneous Neumann problem {-Sigma(N)(i=1) M-i (integral(Omega) 1/p(i)(x) vertical bar partial derivative u/partial derivative x(i)vertical bar(pi(x)) dx) partial derivative/partial derivative x(i) (vertical bar partial derivative u/partial derivative x(i)vertical bar(pi(x) 2) partial derivative u/partial derivative x(i)) + M-0 (integral(Omega) 1/p(0)(x) vertical bar u vertical bar(p0(x)-2) u = f(x,u) + g(x,u) in Omega, Sigma(N)(i=1) vertical bar partial derivative u/partial derivative x(i)vertical bar(pi(x)-2) partial derivative u/partial derivative x(i) v(i)=0 on partial derivative Omega, by applying technical approach based on critical points theorem due to B. Ricceri in a reflexive anisotropic Sobolev spaces. We use some suitable assumptions on the right had side but without using log-H older continu-ous condition.
引用
收藏
页码:465 / 486
页数:22
相关论文
共 40 条
[1]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[2]  
Ahmed A., 2017, J PHARM PRACTICE COM, V3, P70, DOI [10.5530/jppcm.2017.2.17, DOI 10.5530/JPPCM.2017.2.17]
[3]  
Ahmed A., 2017, Nonlinear Stud., V24, P687
[4]  
Ahmed A., 2020, CLIMATE CHANGE 2014, V7, P224
[5]  
Ahmed A, 2017, MATH BOHEM, V142, P243, DOI 10.21136/MB.2017.0037-15
[6]  
Ahmed A, 2015, REND CIRC MAT PALERM, V64, P459, DOI 10.1007/s12215-015-0210-1
[7]  
ALL MSB, 2019, ADV OPER THEORY, V4, P497
[8]  
Alves CO, 2008, DIFFER INTEGRAL EQU, V21, P25
[9]  
Anello G, 2003, J CONVEX ANAL, V10, P185
[10]  
[Anonymous], 2006, Ann. Univ. Ferrara Sez. VII Sci. Mat., DOI DOI 10.1007/S11565-006-0002-9