A Numerical Algorithm for Optimal Control of Systems with Parameter Uncertainty

被引:6
作者
Walton, Claire [1 ]
Phelps, Chris [2 ]
Gong, Qi [2 ]
Kaminer, Isaac [1 ]
机构
[1] Naval Postgrad Sch, Monterey, CA 93943 USA
[2] Univ Calif Santa Cruz, Santa Cruz, CA 95060 USA
关键词
optimal control; nonlinear control; numerical methods; OPTIMIZATION;
D O I
10.1016/j.ifacol.2016.10.209
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a numerical scheme for computing optimal solutions to a class of nonlinear optimal control problems in which parameter uncertainty may be a feature of the state dynamics or objective function. Consistency results are provided for states and controls generated by the algorithm as well as for the adjoint variables. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:468 / 475
页数:8
相关论文
共 23 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], 2012, THESIS
[3]  
[Anonymous], AUTOMATICA
[4]  
[Anonymous], T AUTOMATIC CONTROL
[5]  
[Anonymous], 1963, Dokl. Akad. Nauk SSSR
[6]  
Becker Aaron, 2010, ROBOTICS SCI SYSTEMS
[7]   Decreasing the sensitivity of open-loop optimal solutions in decision making under uncertainty [J].
Darlington, J ;
Pantelides, CC ;
Rustem, B ;
Tanyi, BA .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 121 (02) :343-362
[8]  
Fisher J., 2011, Journal of Dynamic Systems, Measurement, and Control, P133
[9]  
Gabasov R., 1974, PRINCIPI MAKSIMUMA T
[10]   Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control [J].
Gong, Qi ;
Ross, I. Michael ;
Kang, Wei ;
Fahroo, Fariba .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 41 (03) :307-335