Twisted Alexander polynomials with the adjoint action for some classes of knots

被引:9
作者
Tran, Anh T. [1 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
关键词
Twisted Alexander polynomial; adjoint action; Reidemeister torsion; torus knot; twist knot; REIDEMEISTER TORSION; REPRESENTATIONS; INVARIANTS;
D O I
10.1142/S0218216514500515
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the twisted Alexander polynomial with the adjoint action for torus knots and twist knots. As consequences of these calculations, we obtain the formula for the nonabelian Reidemeister torsion of torus knots in [J. Dubois, Nonabelian twisted Reidemeister torsion for fibered knots, Canad. Math. Bull. 49(1) (2006) 55-71] and a formula for the nonabelian Reidemeister torsion of twist knots that is better than the one in [J. Dubois, V. Huynh and Y. Yamaguchi, Nonabelian Reidemeister torsion for twist knots, J. Knot Theory Ramifications 18(3) (2009) 303-341].
引用
收藏
页数:10
相关论文
共 18 条
[1]   Topological invariants of knots and links [J].
Alexander, J. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :275-306
[2]  
[Anonymous], RUSSIAN ACAD SCI SB
[3]  
Dubois J., 2009, ARXIV09061500
[4]   NON-ABELIAN REIDEMEISTER TORSION FOR TWIST KNOTS [J].
Dubois, Jerome ;
Vu Huynh ;
Yamaguchi, Yoshikazu .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2009, 18 (03) :303-341
[5]   Non Abelian twisted Reidemeister torsion for fibered knots [J].
Dubois, R .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (01) :55-71
[6]   Commensurability classes of twist knots [J].
Hoste, J ;
Shanahan, PD .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2005, 14 (01) :91-100
[7]  
Johnson D, LECT NOTES UNPUB LECT NOTES UNPUB
[8]   Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants [J].
Kirk, P ;
Livingston, C .
TOPOLOGY, 1999, 38 (03) :635-661
[9]   Twisted Alexander polynomial and Reidemeister torsion [J].
Kitano, T .
PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) :431-442
[10]  
Kitano T, 2012, ANN SCUOLA NORM-SCI, V11, P395