New spherical (2s+1)-designs from Kuperberg's set: An experimental result

被引:0
作者
Baladram, Mohammad Samy [1 ]
Suprijanto, Djoko [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, Indonesia
关键词
Kuperberg's set; Spherical designs; Chebyshev-type quadrature formula; Interval designs; DESIGNS;
D O I
10.1016/j.amc.2014.10.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2005, Kuperberg proved that 2(s) points +/-root z(1) +/- root z(2) +/- . . . +/- root z(s)' form a Chebyshev-type (2s + 1)-quadrature formula on [-1, 1] with constant weight if and only if the zi's are the zeros of polynomial Q(x) = x(s) - x(s-1)/3 + x(s-2)/45 - . . . + (-1)(s)/1.3.15 ... (4(s) - 1) The Kuperberg's construction on Chebyshev-type quadrature formula above may be regarded as giving an explicit construction of spherical (2s + 1)-designs in the Euclidean space of dimension 3. Motivated by the Kuperberg's result, in this paper, we observe an experimental construction of spherical (2s + 1)-designs, for certain s, from the Kuperberg set of the form +/- a(1) +/- a(2) +/- . . . +/- a(s) in the Euclidean spaces of certain dimensions d >= 4. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 10 条
[1]  
BAJNOK B, 1992, GEOMETRIAE DEDICATA, V43, P167
[2]   TIGHT SPHERICAL DESIGNS .1. [J].
BANNAI, E ;
DAMERELL, RM .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (01) :199-207
[3]   TIGHT SPHERICAL DESIGNS, .2. [J].
BANNAI, E ;
DAMERELL, RM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (FEB) :13-30
[4]  
Bannai E., 2009, EUR J COMBIN, V30
[5]  
Delsarte P., 1977, Geometriae Dedicata, V6, P363, DOI [DOI 10.1007/BF03187604, 10.1007/BF03187604]
[6]   Special moments [J].
Kuperberg, G .
ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (04) :853-870
[7]   BOUNDS FOR THE NUMBER OF NODES IN CHEBYSHEV TYPE QUADRATURE-FORMULAS [J].
RABAU, P ;
BAJNOK, B .
JOURNAL OF APPROXIMATION THEORY, 1991, 67 (02) :199-214
[8]  
SEIDEL JJ, 1990, CONT MATH, V111, P179
[9]   AVERAGING SETS - A GENERALIZATION OF MEAN-VALUES AND SPHERICAL DESIGNS [J].
SEYMOUR, PD ;
ZASLAVSKY, T .
ADVANCES IN MATHEMATICS, 1984, 52 (03) :213-240
[10]  
Yap C.K., 2000, Fundamental Problems of Algorithmic Algebra