The role of Rh dispersion in gas sensing effects observed in SnO2 thin films

被引:12
|
作者
Korotcenkov, G. [1 ]
Nehasil, V [2 ]
机构
[1] Moldova State Univ, Dept Phys & Engn, Str Mateevici 60, Kishinev 2009, MD, Moldova
[2] Charles Univ Prague, Dept Surface & Plasma Sci, Prague, Czech Republic
关键词
Gas sensor; Spray pyrolysis; Conductivity response; Characterization; Optimization; Surface functionalization; Clustering; SPRAY-PYROLYSIS; ISOTOPIC EXCHANGE; METAL-OXIDES; IN-SITU; SENSORS; CO; PD; SELECTIVITY; OXIDATION; RHODIUM;
D O I
10.1016/j.matchemphys.2019.04.069
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work the effect of surface modification by rhodium on the conductivity response of the SnO2 films to reducing gases such as CO and H-2 and oxidizing gas ozone was analyzed. SnO2 films, subjected to surface modification, were deposited by spray pyrolysis, while Rh was deposited using a micro electron beam evaporation. The thickness of the Rh coating varied in the range of 0-0.1 ML. It was found that there is an optimal thickness of Rh, which gives an improvement in the sensor response and a decrease in the recovery time. An explanation of the observed effects was proposed. It was assumed that the atomically dispersed state of rhodium is most active in gas-sensing effects. The transformation from the atomic state to the cluster state reduces the efficiency of the surface functionalization of SnO2 with rhodium.
引用
收藏
页码:160 / 168
页数:9
相关论文
共 50 条
  • [21] Effects of porosity and particle size on the gas sensing properties of SnO2 films
    Han, Min Ah
    Kim, Hyun-Jong
    Lee, Hee Chul
    Park, Jin-Seong
    Lee, Ho-Nyun
    APPLIED SURFACE SCIENCE, 2019, 481 : 133 - 137
  • [22] Ni-doped SnO2 thin films for NO2 gas sensing application
    Abdul Wahid K.I.
    Chaker C.
    Chaker H.
    Sensors and Actuators A: Physical, 2023, 360
  • [23] Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors
    Brunet, E.
    Maier, T.
    Mutinati, G. C.
    Steinhauer, S.
    Koeck, A.
    Gspan, C.
    Grogger, W.
    SENSORS AND ACTUATORS B-CHEMICAL, 2012, 165 (01) : 110 - 118
  • [24] Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films
    Kamble, Dilly L.
    Harale, Namdev S.
    Patil, Vithoba L.
    Patil, Pramod S.
    Kadam, Laxrnan D.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 127 : 38 - 46
  • [25] Annealing Effects on SnO2 Thin Film for H2 Gas Sensing
    Yang, Yijun
    Maeng, Bohee
    Jung, Dong Geon
    Lee, Junyeop
    Kim, Yeongsam
    Kwon, JinBeom
    An, Hee Kyung
    Jung, Daewoong
    NANOMATERIALS, 2022, 12 (18)
  • [26] Gas-sensing characteristics of undoped-SnO2 thin films and Ag/SnO2 and SnO2/Ag structures in a propane atmosphere
    Aguilar-Leyva, J.
    Maldonado, A.
    Olvera, M. de la L.
    MATERIALS CHARACTERIZATION, 2007, 58 (8-9) : 740 - 744
  • [27] Comparative study of SnO2 and SnO2:Cu thin films for gas sensor applications
    Kissine, Vladimir V.
    Voroshilov, Sergei A.
    Sysoev, Victor V.
    Thin Solid Films, 1999, 348 (01): : 304 - 311
  • [28] Gas sensing characteristics of SnO2 thin films and analyses of sensor response by the gas diffusion theory
    Gong, Shuping
    Liu, Jianqiao
    Xia, Jing
    Quan, Lin
    Liu, Huan
    Zhou, Dongxiang
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 164 (02): : 85 - 90
  • [29] Synthesizing SnO2 thin films and characterizing sensing performances
    Ohgaki, Takeshi
    Matsuoka, Ryota
    Watanabe, Ken
    Matsumoto, Kenji
    Adachi, Yutaka
    Sakaguchi, Isao
    Hishita, Shunichi
    Ohashi, Naoki
    Haneda, Hajime
    SENSORS AND ACTUATORS B-CHEMICAL, 2010, 150 (01) : 99 - 104
  • [30] A comparative study of SnO2 and SnO2:Cu thin films for gas sensor applications
    Kissine, VV
    Voroshilov, SA
    Sysoev, VV
    THIN SOLID FILMS, 1999, 348 (1-2) : 304 - 311