A quasi-local Gross-Pitaevskii equation for attractive Bose-Einstein condensates

被引:58
|
作者
García-Ripoll, JJ
Konotop, VV
Malomed, B
Pérez-García, VM
机构
[1] Univ Castilla La Mancha, ETSI Ind, Dept Matemat, Ciudad Real 13071, Spain
[2] Univ Lisbon, Dept Fis, P-1649003 Lisbon, Portugal
[3] Univ Lisbon, Ctr Fis Mat Condensada, P-1649003 Lisbon, Portugal
[4] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Sci, IL-69978 Tel Aviv, Israel
关键词
nonlinear waves; Bose-Einstein condensation; blow-up phenomena;
D O I
10.1016/S0378-4754(02)00190-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study a quasi-local approximation for a nonlocal nonlinear Schrodinger equation. The problem is closely related to several applications, in particular to Bose-Einstein condensates with attractive two-body interactions. The nonlocality is approximated by a nonlinear dispersion term, which is controlled by physically meaningful parameters. We show that the phenomenology found in the nonlocal model is very similar to that present in the reduced one with the nonlinear dispersion. We prove rigorously the absence of collapse in the model, and obtain numerically its stable soliton-like ground state. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [21] The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime
    Boccato, Chiara
    REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (01)
  • [22] Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions
    Cuevas, J.
    Malomed, Boris A.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [23] Dynamics characterization of modified Gross-Pitaevskii equation
    Filho, Victo S.
    Machado, Birajara S.
    Francisco, Gerson
    Tomio, Lauro
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (14) : 3087 - 3094
  • [24] Formal analytical solutions for the Gross-Pitaevskii equation
    Trallero-Giner, C.
    Drake-Perez, Julio C.
    Lopez-Richard, V.
    Birman, Joseph L.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (18) : 2342 - 2352
  • [25] The stochastic Gross-Pitaevskii equation and some applications
    Cockburn, S. P.
    Proukakis, N. P.
    LASER PHYSICS, 2009, 19 (04) : 558 - 570
  • [26] LOCAL UNIQUENESS AND REFINED SPIKE PROFILES OF GROUND STATES FOR TWO-DIMENSIONAL ATTRACTIVE BOSE-EINSTEIN CONDENSATES
    Guo, Yujin
    Lin, Changshou
    Wei, Juncheng
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) : 3671 - 3715
  • [27] Fragility of fragmentation in Bose-Einstein condensates
    Jackson, A. D.
    Kavoulakis, G. M.
    Magiropoulos, M.
    PHYSICAL REVIEW A, 2008, 78 (06):
  • [28] Black holes in Bose-Einstein condensates
    Garay, LJ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (11) : 2073 - 2090
  • [29] Vortices in multicomponent Bose-Einstein condensates
    Kasamatsu, K
    Tsubota, M
    Ueda, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (11): : 1835 - 1904
  • [30] Rotating trapped Bose-Einstein condensates
    Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305-4045, United States
    Laser Phys., 2008, 1 (1-11):