A quasi-local Gross-Pitaevskii equation for attractive Bose-Einstein condensates

被引:58
|
作者
García-Ripoll, JJ
Konotop, VV
Malomed, B
Pérez-García, VM
机构
[1] Univ Castilla La Mancha, ETSI Ind, Dept Matemat, Ciudad Real 13071, Spain
[2] Univ Lisbon, Dept Fis, P-1649003 Lisbon, Portugal
[3] Univ Lisbon, Ctr Fis Mat Condensada, P-1649003 Lisbon, Portugal
[4] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Sci, IL-69978 Tel Aviv, Israel
关键词
nonlinear waves; Bose-Einstein condensation; blow-up phenomena;
D O I
10.1016/S0378-4754(02)00190-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study a quasi-local approximation for a nonlocal nonlinear Schrodinger equation. The problem is closely related to several applications, in particular to Bose-Einstein condensates with attractive two-body interactions. The nonlocality is approximated by a nonlinear dispersion term, which is controlled by physically meaningful parameters. We show that the phenomenology found in the nonlocal model is very similar to that present in the reduced one with the nonlinear dispersion. We prove rigorously the absence of collapse in the model, and obtain numerically its stable soliton-like ground state. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [1] PROJECTED GROSS-PITAEVSKII EQUATION FOR RING-SHAPED BOSE-EINSTEIN CONDENSATES
    Prikhodko, O. O.
    Bidasyuk, Y. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2021, 66 (03): : 198 - 205
  • [2] Perturbation theory for the Gross-Pitaevskii equation modeling stationary Bose-Einstein condensates
    Abulseoud, Ashraf A.
    Alsayad, Hala H.
    El-Sherbini, Tharwat M.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 463
  • [3] Evolution of Bose-Einstein condensate systems beyond the Gross-Pitaevskii equation
    Lyanda-Geller, Yuli
    FRONTIERS IN PHYSICS, 2023, 11
  • [4] Control of the dynamics of coupled atomic-molecular Bose-Einstein condensates: Modified Gross-Pitaevskii approach
    Gupta, Moumita
    Dastidar, Krishna Rai
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [5] Bose-Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross-Pitaevskii Regime
    Brennecke, Christian
    Schlein, Benjamin
    Schraven, Severin
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (02)
  • [6] Studies on the rogue waves of a (3+1)-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation
    Wu, Xiao-Yu
    Li, You
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (24):
  • [7] Non-Markovian Stochastic Gross-Pitaevskii Equation for the Exciton-Polariton Bose-Einstein Condensate
    Alliluev, Alexey D.
    Makarov, Denis V.
    Asriyan, Norayr A.
    Elistratov, Andrei A.
    Lozovik, Yurii E.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2024, 214 (5-6) : 331 - 343
  • [8] Large amplitude spatial fluctuations in the boundary region of the Bose-Einstein condensate in the Gross-Pitaevskii regime
    Tuszynski, JA
    Middleton, J
    Portet, S
    Dixon, JM
    Bang, O
    Christiansen, PL
    Salerno, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 325 (3-4) : 455 - 476
  • [9] Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation
    Wang, Haotian
    Zhou, Qin
    Liu, Wenjun
    JOURNAL OF ADVANCED RESEARCH, 2022, 38 : 179 - 190
  • [10] Dark-dark solitons for the coupled spatially modulated Gross-Pitaevskii system in the Bose-Einstein condensation
    Zhao, Xin
    Tian, Bo
    Qu, Qi-Xing
    Yuan, Yu-Qiang
    Du, Xia-Xia
    Chu, Mei-Xia
    MODERN PHYSICS LETTERS B, 2020, 34 (26):