Since 1962, physiological data of corticofugal effects on subcortical auditory neurons have been controversial: inhibitory, excitatory, or both. An inhibitory effect has been much more frequently observed than an excitatory effect. Recent studies performed with an improved experimental design indicate that corticofugal system mediates a highly focused positive feedback to physiologically "matched" subcortical neurons, and widespread lateral inhibition to "unmatched" subcortical neurons, in order to adjust and improve information processing. These results lead to a question: what happens to subcortical auditory responses when the corticofugal system, including matched and unmatched cortical neurons, is functionally eliminated? We temporarily inactivated both matched and unmatched neurons in the primary auditory cortex of the mustached bat with muscimol (an agonist of inhibitory synaptic transmitter) and measured the effect of cortical inactivation on subcortical auditory responses. Cortical inactivation reduced auditory responses in the medial geniculate body and the inferior colliculus. This reduction was larger (60 vs. 34%) and faster(11 vs. 31 min) for thalamic neurons than for collicular neurons. Our data indicate that the corticofugal system amplifies collicular auditory responses by 1.5 times and thalamic responses by 2.5 times on average. The data are consistant with a scheme in which positive feedback from the auditory cortex is modulated by inhibition that may mostly take place in the cortex.