Albuterol Delivery Efficiency in a Pediatric Model of Noninvasive Ventilation With a Single-Limb Circuit

被引:7
作者
Berlinski, Ariel [1 ,2 ]
Velasco, Jeanne [3 ]
机构
[1] Univ Arkansas Med Sci, Dept Pediat, Pulmonol Sect, Little Rock, AR 72202 USA
[2] Arkansas Childrens Res Inst, Pediat Aerosol Res Lab, Little Rock, AR USA
[3] St Christophers Hosp Children, Philadelphia, PA 19133 USA
关键词
aerosol delivery; noninvasive ventilation; nebulizer; airway model; lung dose; pediatrics; albuterol; POSITIVE-PRESSURE VENTILATION; BRONCHODILATOR DELIVERY;
D O I
10.4187/respcare.06622
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BACKGROUND: Pediatric patients treated with noninvasive ventilation (NIV) are frequently given aerosol therapy. Limited pediatric data are available on the efficiency of aerosol delivery efficiency. We evaluated the effect of different nebulizers, positions in the single-limb ventilator circuit, and ventilator settings on the efficiency of aerosol delivery in a model of pediatric NIV. We hypothesized that using a vibrating mesh nebulizer, placing the nebulizer after the circuit leak, and not using the highest inspiratory positive airway pressure would increase aerosol delivery efficiency. METHODS: We connected a breathing simulator in series to a low-dead-space filter holder (lung dose) and to an anatomically correct face/airway model of a 5-y-old child. A mask with an entrainment elbow was connected to a ventilator operated in a NIV bi-level mode and assembled with a single-limb heated-wired circuit. Inspiratory/expiratory pressures of either 15/5 or 20/5 cm H2O were used. We studied 3 different jet nebulizers and 2 vibrating mesh nebulizers loaded with albuterol solution (2.5 mg/3 mL). Albuterol was measured with spectrophotometry. The outcome measure was the efficiency of aerosol delivery (ie, lung dose expressed as percentage of the nominal dose). RESULTS: Vibrating mesh nebulizers placed after the exhalation port of the circuit had the highest delivery efficiency, even compared with a vibrating mesh nebulizer integrated into the mask. Placing the nebulizer after the exhalation port of the circuit increased efficiency for all nebulizers. Vibrating mesh nebulizers were more efficient than jet nebulizers, regardless of their position in the circuit. Increasing the inspiratory pressure resulted in a variable effect on aerosol-delivery efficiency. CONCLUSIONS: In a model of pediatric NIV using a single-limb circuit, aerosol delivery devices were more efficient when placed after the exhalation port of the ventilator circuit. Vibrating mesh nebulizers were more efficient than jet nebulizers.
引用
收藏
页码:1366 / 1370
页数:5
相关论文
共 13 条
  • [1] Albuterol Delivery by 4 Different Nebulizers Placed in 4 Different Positions in a Pediatric Ventilator In Vitro Model
    Berlinski, Ariel
    Willis, J. Randy
    [J]. RESPIRATORY CARE, 2013, 58 (07) : 1124 - 1133
  • [2] Bickmann D., 2008, Respir Drug Deliv, V2, P565
  • [3] In vitro evaluation of aerosol bronchodilator delivery during noninvasive positive pressure ventilation:: Effect of ventilator settings and nebulizer position
    Chatmongkolchart, S
    Schettino, GPP
    Dillman, C
    Kacmarek, RM
    Hess, DR
    [J]. CRITICAL CARE MEDICINE, 2002, 30 (11) : 2515 - 2519
  • [4] Effect of Face Mask Dead Volume, Respiratory Rate, and Tidal Volume on Inhaled Albuterol Delivery
    Chavez, Alma
    McCracken, Andy
    Berlinski, Ariel
    [J]. PEDIATRIC PULMONOLOGY, 2010, 45 (03) : 224 - 229
  • [5] Dai G., 2013, J AEROSOL MED PULM D, V26, P1
  • [6] Esquinas A, 2013, CAN J RESP THER, V49, P11
  • [7] Michotte JB, 2014, J AEROSOL MED PULM D, V27, P430, DOI 10.1089/jamp.2013.1070
  • [8] Mitchel J, 2013, RESP DRUG DELIV EUR, P373
  • [9] Scala R, 2004, Monaldi Arch Chest Dis, V61, P213
  • [10] Noninvasive positive pressure ventilation in acute asthmatic attack
    Soroksky, A.
    Klinowski, E.
    Ilgyev, E.
    Mizrachi, A.
    Miller, A.
    Ben Yehuda, T.
    Shpirer, I.
    Leonov, Y.
    [J]. EUROPEAN RESPIRATORY REVIEW, 2010, 19 (115) : 39 - 45