ON COMPACTNESS CONDITIONS FOR THE p-LAPLACIAN

被引:0
作者
Jirasek, Pavel [1 ]
机构
[1] Univ W Bohemia, Dept Math, Univ 8, Plzen 30614, Czech Republic
关键词
Boundary value problems; variational methods; Palais-Smale condition; p-Laplacian; Fredholm alternative;
D O I
10.3934/cpaa.2016.15.715
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the geometry and validity of various compactness conditions (e.g. Palais-Smale condition) for the energy functional J(lambda 1) (u) = 1/p integral(Omega) vertical bar del u vertical bar(p) dx - lambda 1/p integral(Omega) vertical bar u vertical bar(p) dx - integral(Omega) dx for u is an element of W-0(1,p)(Omega) 1 < p < infinity, where Omega is a bounded domain in R-N, f is an element of L-infinity(Omega) is a given function and -lambda(1) < 0 is the first eigenvalue of the Dirichlet p-Laplacian Delta(p) on W-0(1,p)(Omega).
引用
收藏
页码:715 / 726
页数:12
相关论文
共 8 条
  • [1] Anane J., 1987, COMPTES RENDUS ACA 1
  • [2] Drabek P., 2004, INDIANA U MATH J
  • [3] El Amrouss A. R., 2005, ACTA MATH SINICA ENG
  • [4] Milota J., 2013, METHODS NONLINEAR AN
  • [5] Takac P., 2002, ADV DIFFER EQU
  • [6] Takac P., 2002, INDIANA U MATH J
  • [7] Takac P., 2007, CALC VAR
  • [8] Takac P., 2002, J DIFFER EQU