Identification of Luminescent Markers for Gunshot Residues: Fluorescence, Raman Spectroscopy, and Chemometrics

被引:23
作者
Carneiro, Caroline R. [1 ]
Silva, Carolina S. [2 ]
de Carvalho, Marcela Albino [2 ]
Pimentel, Maria Fernanda [2 ,3 ]
Talhavini, Marcio [3 ]
Weber, Ingrid T. [1 ]
机构
[1] Univ Brasilia, Chem Inst, LIMA, POB 04478, BR-70904970 Brasilia, DF, Brazil
[2] Univ Fed Pernambuco, Dept Chem Engn, Ave Prof Moraes Rego,1235 Cidade Univ, BR-50740540 Recife, PE, Brazil
[3] Brazilian Fed Police, Natl Inst Criminalist, SAIS Quadra 07 Lote 23, BR-70610200 Brasilia, DF, Brazil
基金
巴西圣保罗研究基金会;
关键词
SEM/EDS ANALYSIS; PARTICLES; CLASSIFICATION; REGRESSION; TOOL;
D O I
10.1021/acs.analchem.9b03079
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Gunshot residue (GSR) is an evidence of major importance in firearm-related crimes. The recent introduction of nontoxic ammunition has made impossible the characterization of GSR particles by the current methods employed by forensic experts. To overcome this drawback, the introduction of luminescent markers was proposed, allowing on-site visual detection of luminescent gunshot residue (LGSR) at the crime scene. Three different luminescent markers coordinated with europium for specific and selective encoding of ammunition have been proposed. To promote a variety of versatile tools for GSR analysis, spectroscopic techniques combined with chemo-metric methods can be applied to achieve a reliable, fast, and nondestructive means to identify LGSR and discriminate among the different markers. Luminescence (emission and excitation), normal, and resonance Raman spectroscopies associated with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were evaluated. The classification model using the complementary information on emission and excitation spectra, a.k.a. data fusion, provided a 100% correct classification for all markers. A comprehensive study has been developed to show that the insertion of luminescent markers enables not only the easy localization of GSR residues but also the possibility of ammunition encoding through the use of multivariate classification methods.
引用
收藏
页码:12444 / 12452
页数:9
相关论文
共 44 条
[1]   Unambiguous Characterization of Gunshot Residue Particles Using Scanning Laser Ablation and Inductively Coupled Plasma-Mass Spectrometry [J].
Abrego, Zurine ;
Ugarte, Ana ;
Unceta, Nora ;
Fernandez-Isla, Alberto ;
Aranzazu Goicolea, M. ;
Barrio, Ramon J. .
ANALYTICAL CHEMISTRY, 2012, 84 (05) :2402-2409
[2]   Use of luminescent gunshot residues markers in forensic context-Part II [J].
Arouca, A. M. ;
Lucena, M. A. M. ;
Rossiter, R. J. ;
Talhavini, M. ;
Weber, I. T. .
FORENSIC SCIENCE INTERNATIONAL, 2017, 281 :161-170
[3]   Classification tools in chemistry. Part 1: linear models. PLS-DA [J].
Ballabio, Davide ;
Consonni, Viviana .
ANALYTICAL METHODS, 2013, 5 (16) :3790-3798
[4]   Characterization of organic gunshot residues in lead-free ammunition using a new sample collection device for liquid chromatography-quadrupole time-of-flight mass spectrometry [J].
Benito, Sandra ;
Abrego, Zurine ;
Sanchez, Alicia ;
Unceta, Nora ;
Goicolea, M. Aranzazu ;
Barrio, Ramon J. .
FORENSIC SCIENCE INTERNATIONAL, 2015, 246 :79-85
[5]   Automated SEM/EDS Analysis of Airbag Residue. II: Airbag Residue as a Source of Percussion Primer Residue Particles [J].
Berk, Robert E. .
JOURNAL OF FORENSIC SCIENCES, 2009, 54 (01) :69-76
[6]   Interpretation of europium(III) spectra [J].
Binnemans, Koen .
COORDINATION CHEMISTRY REVIEWS, 2015, 295 :1-45
[7]   Fate and Behavior of Gunshot Residue-A Review [J].
Blakey, Lauren S. ;
Sharples, George P. ;
Chana, Kal ;
Birkett, Jason W. .
JOURNAL OF FORENSIC SCIENCES, 2018, 63 (01) :9-19
[8]   Data fusion methodologies for food and beverage authentication and quality assessment - A review [J].
Borras, Eva ;
Ferre, Joan ;
Boque, Ricard ;
Mestres, Montserrat ;
Acena, Laura ;
Busto, Olga .
ANALYTICA CHIMICA ACTA, 2015, 891 :1-14
[9]  
Brereton R. G., 2007, APPL CHEMOMETRICS SC
[10]   Pattern recognition in chemometrics [J].
Brereton, Richard G. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 149 :90-96