A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry

被引:40
作者
Pan, Chongle [1 ,2 ]
Park, Byung H. [1 ]
McDonald, William H. [2 ]
Carey, Patricia A. [5 ]
Banfield, Jillian F. [4 ]
VerBerkmoes, Nathan C. [2 ]
Hettich, Robert L. [2 ]
Samatova, Nagiza F. [1 ,3 ]
机构
[1] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA
[3] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA
[4] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[5] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA
来源
BMC BIOINFORMATICS | 2010年 / 11卷
关键词
POSTTRANSLATIONAL MODIFICATIONS; RHODOPSEUDOMONAS-PALUSTRIS; LC-MS/MS; IDENTIFICATION; PROTEINS; TAGS; PERFORMANCE; ALGORITHM; PEPTIDES; DATABASE;
D O I
10.1186/1471-2105-11-118
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: High-resolution tandem mass spectra can now be readily acquired with hybrid instruments, such as LTQ-Orbitrap and LTQ-FT, in high-throughput shotgun proteomics workflows. The improved spectral quality enables more accurate de novo sequencing for identification of post-translational modifications and amino acid polymorphisms. Results: In this study, a new de novo sequencing algorithm, called Vonode, has been developed specifically for analysis of such high-resolution tandem mass spectra. To fully exploit the high mass accuracy of these spectra, a unique scoring system is proposed to evaluate sequence tags based primarily on mass accuracy information of fragment ions. Consensus sequence tags were inferred for 11,422 spectra with an average peptide length of 5.5 residues from a total of 40,297 input spectra acquired in a 24-hour proteomics measurement of Rhodopseudomonas palustris. The accuracy of inferred consensus sequence tags was 84%. According to our comparison, the performance of Vonode was shown to be superior to the PepNovo v2.0 algorithm, in terms of the number of de novo sequenced spectra and the sequencing accuracy. Conclusions: Here, we improved de novo sequencing performance by developing a new algorithm specifically for high-resolution tandem mass spectral data. The Vonode algorithm is freely available for download at http://compbio.ornl.gov/Vonode.
引用
收藏
页数:14
相关论文
共 38 条
  • [1] FAST ALGORITHM FOR PEPTIDE SEQUENCING BY MASS-SPECTROSCOPY
    BARTELS, C
    [J]. BIOMEDICAL AND ENVIRONMENTAL MASS SPECTROMETRY, 1990, 19 (06): : 363 - 368
  • [2] Molecular dynamics of the Shewanella oneidensis response to chromate stress
    Brown, Steven D.
    Thompson, Melissa R.
    VerBerkmoes, Nathan C.
    Chourey, Karuna
    Shah, Manesh
    Zhou, Jizhong
    Hettich, Robert L.
    Thompson, Dorothea K.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (06) : 1054 - 1071
  • [3] A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry
    Chen, T
    Kao, MY
    Tepel, M
    Rush, J
    Church, GM
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2001, 8 (03) : 325 - 337
  • [4] De novo peptide sequencing via tandem mass spectrometry
    Dancík, V
    Addona, TA
    Clauser, KR
    Vath, JE
    Pevzner, PA
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) : 327 - 342
  • [5] AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE
    ENG, JK
    MCCORMACK, AL
    YATES, JR
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) : 976 - 989
  • [6] PepNovo: De novo peptide sequencing via probabilistic network modeling
    Frank, A
    Pevzner, P
    [J]. ANALYTICAL CHEMISTRY, 2005, 77 (04) : 964 - 973
  • [7] De novo peptide sequencing and identification with precision mass spectrometry
    Frank, Ari M.
    Savitski, Mikhail M.
    Nielsen, Michael L.
    Zubarev, Roman A.
    Pevzner, Pavel A.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2007, 6 (01) : 114 - 123
  • [8] A Ranking-Based Scoring Function for Peptide-Spectrum Matches
    Frank, Ari M.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2009, 8 (05) : 2241 - 2252
  • [9] Predicting Intensity Ranks of Peptide Fragment Ions
    Frank, Ari M.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2009, 8 (05) : 2226 - 2240
  • [10] Han Yonghua, 2005, Journal of Bioinformatics and Computational Biology, V3, P697