Cardiomyocyte Polyploidy and Implications for Heart Regeneration

被引:55
作者
Gan, Peiheng [1 ,2 ,3 ]
Patterson, Michaela [4 ,5 ]
Sucov, Henry M. [1 ,2 ]
机构
[1] Med Univ S Carolina, Dept Regenerat Med & Cell Biol, Charleston, SC 29425 USA
[2] Med Univ S Carolina, Dept Med, Div Cardiol, Charleston, SC 29425 USA
[3] Univ Southern Calif, Keck Sch Med, Dept Stem Cell Biol & Regenerat Med, Los Angeles, CA 90033 USA
[4] Med Coll Wisconsin, Dept Cell Biol Neurobiol & Anat, Milwaukee, WI 53226 USA
[5] Med Coll Wisconsin, Cardiovasc Ctr, Milwaukee, WI 53226 USA
来源
ANNUAL REVIEW OF PHYSIOLOGY, VOL 82 | 2020年 / 82卷
基金
美国国家卫生研究院;
关键词
cardiomyocyte ploidy; binucleated; mononuclear diploid; heart regeneration; cardiomyocyte proliferation; CELL-CYCLE ARREST; MAMMALIAN HEART; CARDIAC MYOCYTES; DNA-SYNTHESIS; MOUSE HEART; PROLIFERATION; GROWTH; DEDIFFERENTIATION; DIFFERENTIATION; RECOVERY;
D O I
10.1146/annurev-physiol-021119-034618
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
In mammals, most cardiomyocytes (CMs) become polyploid (they have more than two complete sets of chromosomes). The purpose of this review is to evaluate assumptions about CM ploidy that are commonly discussed, even if not experimentally demonstrated, and to highlight key issues that are still to be resolved. Topics discussed here include (a) technical and conceptual difficulties in defining a polyploid CM, (b) the candidate role of reactive oxygen as a proximal trigger for the onset of polyploidy, (c) the relationship between polyploidization and other aspects of CM maturation, (d) recent insights related to the regenerative role of the subpopulation of CMs that are not polyploid, and (e) speculations as to why CMs become polyploid at all. New approaches to experimentally manipulate CM ploidy may resolve some of these long-standing and fundamental questions.
引用
收藏
页码:45 / 61
页数:17
相关论文
共 84 条
  • [1] Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice
    Ali, Shah R.
    Hippenmeyer, Simon
    Saadat, Lily V.
    Luo, Liqun
    Weissman, Irving L.
    Ardehali, Reza
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (24) : 8850 - 8855
  • [2] No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice
    Alkass, Kanar
    Panula, Joni
    Westman, Mattias
    Wu, Ting-Di
    Guerquin-Kern, Jean-Luc
    Bergmann, Olaf
    [J]. CELL, 2015, 163 (04) : 1026 - 1036
  • [3] Myocyte ploidy in heart chambers of birds with different locomotor activity
    Anatskaya, OV
    Vinogradov, AE
    [J]. JOURNAL OF EXPERIMENTAL ZOOLOGY, 2002, 293 (04): : 427 - 441
  • [4] Anatskaya OV, 2001, J EXP ZOOL, V289, P48, DOI 10.1002/1097-010X(20010101/31)289:1<48::AID-JEZ5>3.0.CO
  • [5] 2-S
  • [6] PPAR signaling in the control of cardiac energy metabolism
    Barger, PM
    Kelly, DP
    [J]. TRENDS IN CARDIOVASCULAR MEDICINE, 2000, 10 (06) : 238 - 245
  • [7] Beltrami, 1997, Adv Clin Path, V1, P59
  • [8] Evidence for Cardiomyocyte Renewal in Humans
    Bergmann, Olaf
    Bhardwaj, Ratan D.
    Bernard, Samuel
    Zdunek, Sofia
    Barnabe-Heider, Fanie
    Walsh, Stuart
    Zupicich, Joel
    Alkass, Kanar
    Buchholz, Bruce A.
    Druid, Henrik
    Jovinge, Stefan
    Frisen, Jonas
    [J]. SCIENCE, 2009, 324 (5923) : 98 - 102
  • [9] Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury
    Bersell, Kevin
    Arab, Shima
    Haring, Bernhard
    Kuehn, Bernhard
    [J]. CELL, 2009, 138 (02) : 257 - 270
  • [10] Human Milk: An Ideal Food for Nutrition of Preterm Newborn
    Boquien, Clair-Yves
    [J]. FRONTIERS IN PEDIATRICS, 2018, 6