Fluorescence resonance energy transfer in revealing protein-protein interactions in living cells

被引:2
|
作者
Bhaumik, Sukesh R. [1 ]
机构
[1] Southern Illinois Univ, Sch Med, Dept Biochem & Mol Biol, Carbondale, IL 62901 USA
基金
美国国家卫生研究院;
关键词
19S PROTEASOME SUBCOMPLEX; PRE-INITIATION COMPLEX; BOX-BINDING PROTEIN; IN-VIVO TARGET; TRANSCRIPTIONAL INITIATION; ACTIVATION DOMAIN; FRET ANALYSIS; REGULATORY MECHANISMS; COMPUTATIONAL METHODS; INTERACTION NETWORKS;
D O I
10.1042/ETLS20200337
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genes are expressed to proteins for a wide variety of fundamental biological processes at the cellular and organismal levels. However, a protein rarely functions alone, but rather acts through interactions with other proteins to maintain normal cellular and organismal functions. Therefore, it is important to analyze the protein-protein interactions to determine functional mechanisms of proteins, which can also guide to develop therapeutic targets for treatment of diseases caused by altered protein-protein interactions leading to cellular/organismal dysfunctions. There is a large number of methodologies to study protein interactions in vitro, in vivo and in silico, which led to the development of many protein interaction databases, and thus, have enriched our knowledge about protein-protein interactions and functions. However, many of these interactions were identified in vitro, but need to be verified/validated in living cells. Furthermore, it is unclear whether these interactions are direct or mediated via other proteins. Moreover, these interactions are representative of cell-and time-average, but not a single cell in real time. Therefore, it is crucial to detect direct protein-protein interactions in a single cell during biological processes in vivo, towards understanding the functional mechanisms of proteins in living cells. Importantly, a fluorescence resonance energy transfer (FRET)-based methodology has emerged as a powerful technique to decipher direct protein-protein interactions at a single cell resolution in living cells, which is briefly described in a limited available space in this mini-review.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 50 条
  • [1] Chromatin and non-chromatin immunoprecipitations to capture protein-protein and protein-nucleic acid interactions in living cells
    Barman, Priyanka
    Kaja, Amala
    Chakraborty, Pritam
    Bhaumik, Sukesh R.
    METHODS, 2023, 218 : 158 - 166
  • [2] Dynamic proteomics in modeling of the living cell. Protein-protein interactions
    Terentiev, A. A.
    Moldogazieva, N. T.
    Shaitan, K. V.
    BIOCHEMISTRY-MOSCOW, 2009, 74 (13) : 1586 - 1607
  • [3] Predicting protein-protein interactions in the context of protein evolution
    Lewis, Anna C. F.
    Saeed, Ramazan
    Deane, Charlotte M.
    MOLECULAR BIOSYSTEMS, 2010, 6 (01) : 55 - 64
  • [4] INTRINSIC PROTEIN DISORDER AND PROTEIN-PROTEIN INTERACTIONS
    Hsu, Wei-Lun
    Oldfield, Christopher
    Meng, Jingwei
    Huang, Fei
    Xue, Bin
    Uversky, Vladimir N.
    Romero, Pedro
    Dunker, A. Keith
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2012, 2012, : 116 - 127
  • [5] Computational Approaches for the Prediction of Protein-Protein Interactions: A Survey
    Theofilatos, Konstantinos A.
    Dimitrakopoulos, Christos M.
    Tsakalidis, Athanasios K.
    Likothanassis, Spyridon D.
    Papadimitriou, Stergios T.
    Mavroudi, Seferina P.
    CURRENT BIOINFORMATICS, 2011, 6 (04) : 398 - 414
  • [6] Predicting global protein-protein interactions
    Rachel Brem
    Genome Biology, 1 (1)
  • [7] A census of yeast protein-protein interactions
    Mar Alba
    Genome Biology, 1 (2)
  • [8] Decoding Protein-protein Interactions: An Overview
    Slater, Olivia
    Miller, Bethany
    Kontoyianni, Maria
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2020, 20 (10) : 855 - 882
  • [9] Mining from protein-protein interactions
    Mamitsuka, Hiroshi
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 2 (05) : 400 - 410
  • [10] Evolution of Specificity in Protein-Protein Interactions
    Peleg, Orit
    Choi, Jeong-Mo
    Shakhnovich, Eugene I.
    BIOPHYSICAL JOURNAL, 2014, 107 (07) : 1686 - 1696