The Transformative Power of Biocatalysis in Convergent Synthesis

被引:27
作者
Zetzsche, Lara E. [1 ,2 ]
Chakrabarty, Suman [1 ]
Narayan, Alison R. H. [3 ,4 ]
机构
[1] Univ Michigan, Life Sci Inst, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Program Chem Biol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Life Sci Inst, Program Chem Biol, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
关键词
KINETIC RESOLUTION; CHEMOENZYMATIC SYNTHESIS; POLYKETIDE BIOSYNTHESIS; COUPLING REACTIONS; BOND FORMATION; MECHANISM; LACCASE; DERIVATIVES; STRATEGIES; DISCOVERY;
D O I
10.1021/jacs.2c00224
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving convergent synthetic strategies has long been a gold standard in constructing complex molecular skeletons, allowing for the rapid generation of complexity in comparatively streamlined synthetic routes. Traditionally, biocatalysis has not played a prominent role in convergent laboratory synthesis, with the application of biocatalysts in convergent strategies primarily limited to the synthesis of chiral fragments. Although the use of enzymes to enable convergent synthetic approaches is relatively new and emerging, combining the efficiency of convergent transformations with the selectivity achievable through biocatalysis creates new opportunities for efficient synthetic strategies. This Perspective provides an overview of recent developments in biocatalytic strategies for convergent transformations and offers insights into the advantages of these methods compared to their small molecule-based counterparts.
引用
收藏
页码:5214 / 5225
页数:12
相关论文
共 112 条
[1]   Convergent Synthesis of Homogeneous Glc1Man9GlcNAc2-Protein and Derivatives as Ligands of Molecular Chaperones in Protein Quality Control [J].
Amin, Mohammed N. ;
Huang, Wei ;
Mizanur, Rahman M. ;
Wang, Lai-Xi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (36) :14404-14417
[2]  
[Anonymous], 2010, ANGEW CHEM-GER EDIT
[3]   Engineering the third wave of biocatalysis [J].
Bornscheuer, U. T. ;
Huisman, G. W. ;
Kazlauskas, R. J. ;
Lutz, S. ;
Moore, J. C. ;
Robins, K. .
NATURE, 2012, 485 (7397) :185-194
[4]   Expanding the medicinal chemistry synthetic toolbox [J].
Bostrom, Jonas ;
Brown, Dean G. ;
Young, Robert J. ;
Keseru, Gyorgy M. .
NATURE REVIEWS DRUG DISCOVERY, 2018, 17 (10) :709-727
[5]   Industrial methods for the production of optically active intermediates [J].
Breuer, M ;
Ditrich, K ;
Habicher, T ;
Hauer, B ;
Kesseler, M ;
Stürmer, R ;
Zelinski, T .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (07) :788-824
[6]   Atroposelective synthesis of axially chiral biaryl compounds [J].
Bringmann, G ;
Mortimer, AJP ;
Keller, PA ;
Gresser, MJ ;
Garner, J ;
Breuning, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (34) :5384-5427
[7]   KINETIC RESOLUTION OF PIPERAZINE-2-CARBOXAMIDE BY LEUCINE AMINOPEPTIDASE - AN APPLICATION IN THE SYNTHESIS OF THE NUCLEOSIDE TRANSPORT BLOCKER (-)DRAFLAZINE [J].
BRUCE, MA ;
LAURENT, DRS ;
POINDEXTER, GS ;
MONKOVIC, I ;
HUANG, S ;
BALASUBRAMANIAN, N .
SYNTHETIC COMMUNICATIONS, 1995, 25 (17) :2673-2684
[8]   Chemoenzymatic Total Synthesis of Natural Products [J].
Chakrabarty, Suman ;
Romero, Evan O. ;
Pyser, Joshua B. ;
Yazarians, Jessica A. ;
Narayan, Alison R. H. .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (06) :1374-1384
[9]   Scalable biocatalytic C-H oxyfunctionalization reactions [J].
Chakrabarty, Suman ;
Wang, Ye ;
Perkins, Jonathan C. ;
Narayan, Alison R. H. .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (22) :8137-8155
[10]   Iterative polyketide biosynthesis by modular polyketide synthases in bacteria [J].
Chen, Haotong ;
Du, Liangcheng .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (02) :541-557