GMM-based procedure for multiple hypotheses testing

被引:0
|
作者
Zhang, Jingyi [1 ]
He, Zhijian [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 610641, Peoples R China
基金
美国国家科学基金会;
关键词
False discovery rate; False nondiscovery rate; Gaussian mixture model; Multiple hypotheses; FALSE DISCOVERY RATE; NULL;
D O I
10.1080/03610918.2022.2082476
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiple hypotheses testing has been widely studied in the literature due to its broad applicability, particularly in the fields of biogenetics and astrogeology. The false discovery rate (FDR) is a useful error control criterion for large-scale multiple hypotheses, which is loosely defined as the expected proportion of false positives among all rejected hypotheses. In this paper, we propose a Gaussian mixture model (GMM) to fit the distribution of the Z-value statistics, including the nulls distribution as a fixed component. The nulls proportion and the real nulls distribution are estimated by the fitted GMM simultaneously. A GMM-based procedure is then proposed to minimize the false nondiscovery rate (FNR) subject to a constraint on the FDR. Both simulations and real data analysis show that the GMM-based procedure performs considerably well comparing to some competitors.
引用
收藏
页码:2605 / 2623
页数:19
相关论文
共 50 条
  • [1] Testing Interval Forecasts: A GMM-Based Approach
    Dumitrescu, Elena-Ivona
    Hurlin, Christophe
    Madkour, Jaouad
    JOURNAL OF FORECASTING, 2013, 32 (02) : 97 - 110
  • [2] Monitoring Radiated Coexistence Testing Using GMM-Based Classifier
    Al Kalaa, Mohamad Omar
    Refai, Hazem H.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (11) : 10336 - 10345
  • [3] GMM-BASED SIGNIFICANCE DECODING
    Abdelaziz, Ahmed Hussen
    Zeiler, Steffen
    Kolossa, Dorothea
    Leutnant, Volker
    Haeb-Umbach, Reinhold
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6827 - 6831
  • [4] An optimal procedure for multiple hypotheses testing
    Julián de la Horra
    María Teresa Rodríguez-Bernal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 327 - 335
  • [5] An optimal procedure for multiple hypotheses testing
    de la Horra, Julian
    Teresa Rodriguez-Bernal, Maria
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 327 - 335
  • [6] An improved closed procedure for testing multiple hypotheses
    Lu, Zeng-Hua
    STATISTICS IN MEDICINE, 2020, 39 (26) : 3772 - 3786
  • [7] Multiple Object Tracking Using Improved GMM-Based Motion Segmentation
    Fazli, Saeid
    Pour, Hamed Moradi
    Bouzari, Hamed
    ECTI-CON: 2009 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2009, : 1096 - 1099
  • [8] Fuzzy Method for Multiple Hypotheses Testing Procedure
    Taweesapaya, Veerapat
    Thongteeraparp, Ampai
    Wanishsakpong, Wandee
    Sudsila, Pupe
    Volodin, Andrei
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (09) : 4387 - 4393
  • [9] GMM-based SVM for face recognition
    Bredin, Herve
    Dehak, Najim
    Chollet, Gerard
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 1111 - +
  • [10] GMM-based classification of genomic sequences
    Akhtar, Mahmood
    Ambikairajah, Eliathamby
    Epps, Julien
    PROCEEDINGS OF THE 2007 15TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, 2007, : 103 - +