Eigenvalues, singular values, and Littlewood-Richardson coefficients

被引:35
作者
Fomin, S [1 ]
Fulton, W
Li, CK
Poon, YT
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
D O I
10.1353/ajm.2005.0005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the relationship between the singular values of a Hermitian (resp., real symmetric, complex symmetric) matrix and the singular values of its off-diagonal block. We also characterize the eigenvalues of a Hermitian (or real symmetric) matrix C = A + B in terms of the combined list of eigenvalues of A and B. The answers are given by Horn-type linear inequalities. The proofs depend on a new inequality among Littlewood-Richardson coefficients.
引用
收藏
页码:101 / 127
页数:27
相关论文
共 17 条