Geometric property (T) was defined by Willett and Yu, first for sequences of graphs and later for more general discrete spaces. Increasing sequences of graphs with geometric property (T) are expanders, and they are examples of coarse spaces for which the maximal coarse Baum-Connes assembly map fails to be surjective. Here, we give a broader definition of bounded geometry for coarse spaces, which includes non-discrete spaces. We define a generalisation of geometric property (T) for this class of spaces and show that it is a coarse invariant. Additionally, we characterise it in terms of spectral properties of Laplacians. We investigate geometric property (T) for manifolds and warped systems. (C) 2021 Elsevier Inc. All rights reserved.
机构:
Univ Virginia, Dept Math, Charlottesville, VA 22904 USAUniv Virginia, Dept Math, Charlottesville, VA 22904 USA
Ershov, Mikhail
Jaikin-Zapirain, Andrei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
Univ Complutense Madrid, Univ Carlos III Madrid, Univ Autonoma Madrid, Spanish Natl Res Council,Inst Ciencias Matemat, Madrid 28049, SpainUniv Virginia, Dept Math, Charlottesville, VA 22904 USA
Jaikin-Zapirain, Andrei
Kassabov, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Math, Ithaca, NY 14853 USAUniv Virginia, Dept Math, Charlottesville, VA 22904 USA
Kassabov, Martin
Zhang, Zezhou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USAUniv Virginia, Dept Math, Charlottesville, VA 22904 USA
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
Meng, Qing
Ng, Chi-Keung
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China