SYMMETRIC FUNCTIONS OF BINARY PRODUCTS OF TRIBONACCI LUCAS NUMBERS AND ORTHOGONAL POLYNOMIALS

被引:0
|
作者
Merzouk, Hind [1 ,2 ]
Boussayoud, Ali [1 ,2 ]
Chelgham, Mourad [1 ,2 ]
机构
[1] Mohamed Seddik Ben Yahia Univ, LMAM Lab, Jijel, Algeria
[2] Mohamed Seddik Ben Yahia Univ, Dept Math, Jijel, Algeria
来源
JOURNAL OF SCIENCE AND ARTS | 2021年 / 02期
关键词
symmetric functions; generating functions; Tribonacci Lucas numbers; orthogonal polynomials; SEQUENCES;
D O I
10.46939/J.Sci.Arts-21.2-a13
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we will recover the new generating functions of some products of Tribonacci Lucas numbers and orthogonal polynomials. The technic used her is based on the theory of the so called symmetric functions.
引用
收藏
页码:461 / 478
页数:18
相关论文
共 50 条
  • [41] GENERATING FUNCTIONS OF EVEN AND ODD GAUSSIAN NUMBERS AND POLYNOMIALS
    Saba, Nabiha
    Boussayoud, Ali
    Kerada, Mohamed
    JOURNAL OF SCIENCE AND ARTS, 2021, (01): : 125 - 144
  • [42] d-Symmetric d-orthogonal polynomials of Brenke type
    Ben Cheikh, Youssef
    Ben Romdhane, Neila
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 735 - 747
  • [43] ORDINARY GENERATING FUNCTIONS OF BINARY PRODUCTS OF (p,q)-MODIFIED PELL NUMBERS AND k-NUMBERS AT POSITIVE AND NEGATIVE INDICES
    Saba, Nabiha
    Boussayoud, Ali
    JOURNAL OF SCIENCE AND ARTS, 2020, (03): : 627 - 646
  • [44] Representing by Orthogonal Polynomials for Sums of Finite Products of Fubini Polynomials
    Kim, Dae San
    Dolgy, Dmitry V.
    Kim, Dojin
    Kim, Taekyun
    MATHEMATICS, 2019, 7 (04)
  • [45] Expansion of multivariable polynomials in products of orthogonal polynomials in one variable
    Ronveaux, A
    Rebillard, L
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 128 (2-3) : 387 - 414
  • [46] Wronskian Appell polynomials and symmetric functions
    Bonneux, Niels
    Hamaker, Zachary
    Stembridge, John
    Stevens, Marco
    ADVANCES IN APPLIED MATHEMATICS, 2019, 111
  • [47] Reflections on symmetric polynomials and arithmetic functions
    MacHenry, T
    Tudose, G
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (03) : 901 - 928
  • [48] Generalizations of generating functions for hypergeometric orthogonal polynomials with definite integrals
    Cohl, Howard S.
    MacKenzie, Connor
    Volkmer, Hans
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) : 211 - 225
  • [49] Characterizations of Δ-Volterra lattice: A symmetric orthogonal polynomials interpretation
    Area, I.
    Branquinho, A.
    Foulquie Moreno, A.
    Godoy, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 243 - 259
  • [50] The symmetric Dunkl-classical orthogonal polynomials revisited
    Douak, Khalfa
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025, 36 (02) : 102 - 120