Theoretical study of the mechanism of formic acid decomposition on the PdAg(111) surface

被引:21
作者
Wang, Yingying [1 ,2 ]
Liu, Peng [1 ]
Zhang, Dongju [1 ]
Liu, Chengbu [1 ]
机构
[1] Shandong Univ, Inst Theoret Chem, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China
[2] Shandong Vocat Coll Light Ind, Zibo 255300, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Formic acid decomposition; Density functional theory; Reaction pathway; PdAg(111) surface; HIGH ELECTROCATALYTIC ACTIVITY; PALLADIUM NANOPARTICLES; SUPERIOR CATALYSIS; OXIDATION; PD; HYDROGEN; CO; 1ST-PRINCIPLES; PERFORMANCE; HCOOH;
D O I
10.1016/j.ijhydene.2016.03.116
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A deep knowledge about the mechanism of formic acid (HCOOH) decomposition on Pd-based materials is of fundamental importance to structural designs of efficient catalysts used in direct formic acid fuel cells (DFAFCs). This work presents a theoretical study of the mechanism of HCOOH decomposition on the PdAg(111) surface with the absence and presence of water molecules. The calculated results show that HCOOH preferentially decomposes to CO2 regardless of without or with the presence of water. The energy barrier difference of the rate-determining steps for the formations of CO2 and CO on PdAg(111) surface is found to be much larger than that on monometallic Pd(111) surface. The theoretical results indicate that bimetal PdAg(1111) surface can suppress formation of CO, which rationalize well the experimental observation that PdAg bimetal catalysts exhibit improved tolerance toward CO poisoning for HCOOH decomposition. Copyright (C) 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7342 / 7351
页数:10
相关论文
共 50 条
[41]   Decomposition of Formic Acid on Pt/N-Graphene [J].
Chesnokov, V. V. ;
Lisitsyn, A. S. ;
Sobolev, V., I ;
Gerasimov, E. Yu ;
Prosvirin, I. P. ;
Chesalov, Yu A. ;
Chichkan, A. S. ;
Podyacheva, O. Yu .
KINETICS AND CATALYSIS, 2021, 62 (04) :518-527
[42]   Kinetic Isolation between Turnovers on Au18 Nanoclusters: Formic Acid Decomposition One Molecule at a Time [J].
Chen, Benjamin W. J. ;
Stamatakis, Michail ;
Mavrikakis, Manos .
ACS CATALYSIS, 2019, 9 (10) :9446-9457
[43]   Identification of reaction intermediates in the decomposition of formic acid on Pd [J].
Fingerhut, Jan ;
Lecroart, Loic ;
Schwarzer, Michael ;
Hoerandl, Stefan ;
Borodin, Dmitriy ;
Kandratsenka, Alexander ;
Kitsopoulos, Theofanis N. ;
Auerbach, Daniel J. ;
Wodtke, Alec M. .
FARADAY DISCUSSIONS, 2024, 251 (00) :412-434
[44]   Evolution of the PVP-Pd Surface Interaction in Nanoparticles through the Case Study of Formic Acid Decomposition [J].
Garcia-Aguilar, Jaime ;
Navlani-Garcia, Miriam ;
Berenguer-Murcia, Angel ;
Mori, Kohsuke ;
Kuwahara, Yasutaka ;
Yamashita, Hiromi ;
Cazorla-Amoros, Diego .
LANGMUIR, 2016, 32 (46) :12110-12118
[45]   Theoretical insight into the role of nitrogen in the formic acid decomposition over Pt13/N-GNS [J].
Feng, Jian-Rui ;
Wang, Gui-Chang .
APPLIED SURFACE SCIENCE, 2021, 539
[46]   New insight into the CO formation mechanism during formic acid oxidation on Pt(111) [J].
Zhong, Wenhui ;
Zhang, Dongju .
CATALYSIS COMMUNICATIONS, 2012, 29 :82-86
[47]   A theoretical study of formaldehyde adsorption and decomposition on a WC (0001) surface [J].
Wang, Dandan ;
Fan, Yingying ;
Sun, Zhonghui ;
Han, Dongxue ;
Niu, Li .
RSC ADVANCES, 2018, 8 (57) :32481-32489
[48]   Oxygen adsorption and diffusion on an Al(111) surface and subsurface: a theoretical study [J].
Zhou, Su-Qin ;
Wu, Yang-Yang ;
Xu, Si-Yu ;
Zhao, Feng-Qi ;
Ju, Xue-Hai .
CANADIAN JOURNAL OF CHEMISTRY, 2016, 94 (06) :541-546
[49]   Theoretical Insight into the Mechanism and Descriptor for Hydrogen Spillover on the Pt/CeO2(111) Surface with Different Pt Coverages [J].
Liang, Congcong ;
Zhang, De ;
Li, Xin ;
Liu, Yan ;
Chen, Congbiao ;
Wang, Qiang ;
Hou, Bo ;
Ma, Zhongyi ;
Wang, Kangjun .
CATALYSTS, 2025, 15 (02)
[50]   Theoretical investigation on the effect of doped Pd on the Cu(111) surface for formic acid oxidation: Competing formation of CO2 and CO [J].
Jiang, Zhao ;
Ye, Na ;
Fang, Tao .
CHEMICAL PHYSICS LETTERS, 2020, 751 (751)