Theoretical study of the mechanism of formic acid decomposition on the PdAg(111) surface

被引:21
作者
Wang, Yingying [1 ,2 ]
Liu, Peng [1 ]
Zhang, Dongju [1 ]
Liu, Chengbu [1 ]
机构
[1] Shandong Univ, Inst Theoret Chem, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China
[2] Shandong Vocat Coll Light Ind, Zibo 255300, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Formic acid decomposition; Density functional theory; Reaction pathway; PdAg(111) surface; HIGH ELECTROCATALYTIC ACTIVITY; PALLADIUM NANOPARTICLES; SUPERIOR CATALYSIS; OXIDATION; PD; HYDROGEN; CO; 1ST-PRINCIPLES; PERFORMANCE; HCOOH;
D O I
10.1016/j.ijhydene.2016.03.116
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A deep knowledge about the mechanism of formic acid (HCOOH) decomposition on Pd-based materials is of fundamental importance to structural designs of efficient catalysts used in direct formic acid fuel cells (DFAFCs). This work presents a theoretical study of the mechanism of HCOOH decomposition on the PdAg(111) surface with the absence and presence of water molecules. The calculated results show that HCOOH preferentially decomposes to CO2 regardless of without or with the presence of water. The energy barrier difference of the rate-determining steps for the formations of CO2 and CO on PdAg(111) surface is found to be much larger than that on monometallic Pd(111) surface. The theoretical results indicate that bimetal PdAg(1111) surface can suppress formation of CO, which rationalize well the experimental observation that PdAg bimetal catalysts exhibit improved tolerance toward CO poisoning for HCOOH decomposition. Copyright (C) 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7342 / 7351
页数:10
相关论文
共 50 条
[31]   Theoretical study of the adsorption of SF6 decomposition components on Ni (111) surface [J].
Li, Jie ;
Gui, Yingang ;
Ji, Chang ;
Tang, Chao ;
Zhou, Qu ;
Wang, Yao ;
Zhang, Xiaoxing .
COMPUTATIONAL MATERIALS SCIENCE, 2018, 152 :248-255
[32]   Formic acid decomposition over V-Ti oxide catalyst: Mechanism and kinetics [J].
Sadovskaya, E. M. ;
Chesalov, Yu. A. ;
Goncharov, V. B. ;
Sobolev, V. I. ;
Andrushkevich, T. V. .
MOLECULAR CATALYSIS, 2017, 430 :54-62
[33]   Platinum Complex Catalyzed Decomposition of Formic Acid [J].
Rieckborn, Timo Paul ;
Huber, Elvira ;
Karakoc, Emine ;
Prosenc, Marc Heinrich .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2010, (30) :4757-4761
[34]   Adsorption and Decomposition of Formic Acid on Cobalt(0001) [J].
Sims, Jeffrey J. ;
Hamou, Cherif Aghiles Ould ;
Reocreux, Romain ;
Michel, Carine ;
Giorgi, Javier B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (35) :20279-20288
[35]   Design of Pd{111}-TiO2 interface for enhanced catalytic efficiency towards formic acid decomposition [J].
You, Yang ;
Huang, Hao ;
Xia, Song ;
Cai, Zijian ;
Liu, Panyiming ;
Wang, Chengming ;
Long, Ran ;
Song, Li ;
Xiong, Yujie .
SCIENCE CHINA-CHEMISTRY, 2018, 61 (09) :1123-1127
[36]   Theoretical Study of Trimethylacetic Acid Adsorption on CeO2(111) Surface [J].
Wang, Weina ;
Thevuthasan, S. ;
Wang, Wenliang ;
Yang, Ping .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (05) :2655-2666
[37]   Adsorption and decomposition mechanism of formic acid on the Ga2O3 surface by first principle studies [J].
Liu, Yan ;
Li, Zhen Hua .
SURFACE SCIENCE, 2017, 656 :86-95
[38]   PdAg/Ag(111) Surface Alloys: A Highly Efficient Catalyst of Oxygen Reduction Reaction [J].
Hua, Minghao ;
Tian, Xuelei ;
Li, Shuo ;
Lin, Xiaohang .
NANOMATERIALS, 2022, 12 (11)
[39]   The interaction of CO with PdAg/Pd(111) surface alloys-A case study of ensemble effects on a bimetallic surface [J].
Ma, Yunsheng ;
Diemant, T. ;
Bansmann, J. ;
Behm, R. J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (22) :10741-10754
[40]   A mechanistic study on the decomposition of a model bio-oil compound for hydrogen production over a stepped Ni surface: Formic acid [J].
Li, Xinbao ;
Xuan, Kejie ;
Zhu, Yingying ;
Chen, Geng ;
Yang, Guohua .
APPLIED SURFACE SCIENCE, 2018, 452 :87-95