Optical trapping core formation and general trapping mechanism in single-beam optical tweezers

被引:3
作者
Huang, Di [1 ]
Wan, Pengcheng [1 ]
Zhou, Ling [1 ]
Guo, Haiqin [1 ]
Zhao, Ruihuang [1 ]
Chen, Jun [2 ,3 ]
Ng, Jack [4 ]
Du, Junjie [1 ]
机构
[1] East China Normal Univ, Sch Phys & Elect Sci, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] Shanxi Univ, Inst Theoret Phys, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2022年 / 24卷 / 04期
关键词
decomposition of optical forces; Mie particles; optical tweezers; optical trapping core; BOSE-EINSTEIN CONDENSATION; GRADIENT; FORCE; ATOMS; PARTICLES;
D O I
10.1088/1367-2630/ac643a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The working mechanism of single-beam optical tweezers is revisited using a recently established method. The optical force is split into conservative and nonconservative components, and these components are explicitly calculated for particles in the Rayleigh, Mie and geometrical optics regimes. The results indicate that optical trapping is attributable to the formation of an 'optical trapping core'. Stable trapping is achieved when the conservative forces are larger than the nonconservative forces in the core region centered at the beam centers for all particle sizes. According to the conventional understanding, stability is a result of the conservative force overcoming the nonconservative force. In comparison, the concept of the optical trapping core more accurately illustrates the physical mechanism of optical trapping, for not only single-beam optical tweezers but also optical trapping settings.
引用
收藏
页数:7
相关论文
共 38 条
  • [11] Phase behavior of colloidal molecular crystals on triangular light lattices
    Brunner, M
    Bechinger, C
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (24) : 4 - 248302
  • [12] Stationary Gaussian entanglement between levitated nanoparticles
    Chauhan, Anil Kumar
    Cernotik, Ondrej
    Filip, Radim
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (12)
  • [13] LASER-INDUCED FREEZING
    CHOWDHURY, A
    ACKERSON, BJ
    CLARK, NA
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (08) : 833 - 836
  • [14] 3-DIMENSIONAL VISCOUS CONFINEMENT AND COOLING OF ATOMS BY RESONANCE RADIATION PRESSURE
    CHU, S
    HOLLBERG, L
    BJORKHOLM, JE
    CABLE, A
    ASHKIN, A
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (01) : 48 - 51
  • [15] Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences
    Crooks, GE
    [J]. PHYSICAL REVIEW E, 1999, 60 (03): : 2721 - 2726
  • [16] Evanescent wave induced polarization-insensitive self-organization of stratified single-negative materials
    Cui, Liyong
    Yin, Hang
    [J]. NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [17] BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS
    DAVIS, KB
    MEWES, MO
    ANDREWS, MR
    VANDRUTEN, NJ
    DURFEE, DS
    KURN, DM
    KETTERLE, W
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (22) : 3969 - 3973
  • [18] Dholakia K, 2006, NANO TODAY, V1, P18, DOI 10.1016/S1369-7021(06)71362-1
  • [19] Tailoring Optical Gradient Force and Optical Scattering and Absorption Force
    Du, Junjie
    Yuen, Chi-Hong
    Li, Xiao
    Ding, Kun
    Du, Guiqiang
    Lin, Zhifang
    Chan, C. T.
    Ng, Jack
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [20] Absolute calibration of forces in optical tweezers
    Dutra, R. S.
    Viana, N. B.
    Maia Neto, P. A.
    Nussenzveig, H. M.
    [J]. PHYSICAL REVIEW A, 2014, 90 (01)