Better Reporting of Studies on Artificial Intelligence: CONSORT-AI and Beyond

被引:21
作者
Schwendicke, F. [1 ]
Krois, J. [1 ]
机构
[1] Charite Univ Med Berlin, Dept Oral Diagnost, Digital Hlth & Hlth Serv Res, Assmannshauser Str 4-6, D-14197 Berlin, Germany
关键词
clinical studies; trials; computer vision; decision-making; deep learning; personalized medicine; software engineering; QUALITY; TOOL;
D O I
10.1177/0022034521998337
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
An increasing number of studies on artificial intelligence (AI) are published in the dental and oral sciences. The reporting, but also further aspects of these studies, suffer from a range of limitations. Standards towards reporting, like the recently published Consolidated Standards of Reporting Trials (CONSORT)-AI extension can help to improve studies in this emerging field, and the Journal of Dental Research (JDR) encourages authors, reviewers, and readers to adhere to these standards. Notably, though, a wide range of aspects beyond reporting, located along various steps of the AI lifecycle, should be considered when conceiving, conducting, reporting, or evaluating studies on AI in dentistry.
引用
收藏
页码:677 / 680
页数:4
相关论文
共 30 条
[1]  
Adebayo J. A., 2016, Fairml: Toolbox for diagnosing bias in predictive modeling
[2]  
Ammanath B., 2020, DELOITTE INSIGHTS
[3]   Deep learning predicts hip fracture using confounding patient and healthcare variables [J].
Badgeley, Marcus A. ;
Zech, John R. ;
Oakden-Rayner, Luke ;
Glicksberg, Benjamin S. ;
Liu, Manway ;
Gale, William ;
McConnell, Michael, V ;
Percha, Bethany ;
Snyder, Thomas M. ;
Dudley, Joel T. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[4]   AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias [J].
Bellamy, R. K. E. ;
Dey, K. ;
Hind, M. ;
Hoffman, S. C. ;
Houde, S. ;
Kannan, K. ;
Lohia, P. ;
Martino, J. ;
Mehta, S. ;
Mojsilovie, A. ;
Nagar, S. ;
Ramamurthy, K. Natesan ;
Richards, J. ;
Saha, D. ;
Sattigeri, P. ;
Singh, M. ;
Varshney, K. R. ;
Zhang, Y. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2019, 63 (4-5)
[5]  
Bossuyt PM, 2015, BMJ-BRIT MED J, V351, DOI [10.1136/bmj.h5527, 10.1148/radiol.2015151516, 10.1373/clinchem.2015.246280]
[6]   H-Accuracy, an Alternative Metric to Assess Classification Models in Medicine [J].
Campagner, Andrea ;
Sconfienza, Luca ;
Cabitza, Federico .
DIGITAL PERSONALIZED HEALTH AND MEDICINE, 2020, 270 :242-246
[7]   Detecting caries lesions of different radiographic extension on bitewings using deep learning [J].
Cantu, Anselmo Garcia ;
Gehrung, Sascha ;
Krois, Joachim ;
Chaurasia, Akhilanand ;
Rossi, Jesus Gomez ;
Gaudin, Robert ;
Elhennawy, Karim ;
Schwendicke, Falk .
JOURNAL OF DENTISTRY, 2020, 100
[8]   Reporting of artificial intelligence prediction models [J].
Collins, Gary S. ;
Moons, Karel G. M. .
LANCET, 2019, 393 (10181) :1577-1579
[9]   With an eye to AI and autonomous diagnosis [J].
Keane, Pearse A. ;
Topol, Eric J. .
NPJ DIGITAL MEDICINE, 2018, 1
[10]   Key challenges for delivering clinical impact with artificial intelligence [J].
Kelly, Christopher J. ;
Karthikesalingam, Alan ;
Suleyman, Mustafa ;
Corrado, Greg ;
King, Dominic .
BMC MEDICINE, 2019, 17 (01)