Entropy and approximation numbers of weighted Sobolev spaces via bracketing

被引:7
作者
Mieth, Therese [1 ]
机构
[1] Univ Jena, Fak Math & Informat, Inst Math, D-07737 Jena, Germany
关键词
Approximation numbers; Entropy numbers; Weighted Sobolev spaces; EMBEDDINGS;
D O I
10.1016/j.jfa.2015.12.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the asymptotic behaviour of entropy and approximation numbers of the compact embedding id : E-p,sigma(m)(B) -> L-p(B), 1 <= p < infinity, defined on the unit ball B in R-n. Here E-p,sigma(m)(B) denotes a Sobolev space with a power weight perturbed by a logarithmic function. The weight contains a singularity at the origin. Inspired by Evans and Harris [5], we apply a bracketing technique which is an analogue to that of Dirichlet-Neumann bracketing used by Triebel in [14] for p= 2. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:4322 / 4339
页数:18
相关论文
共 14 条
[1]  
[Anonymous], 1992, HIGHER ANAL
[2]  
[Anonymous], 2004, HARDY OPERATORS FUNC, DOI DOI 10.1007/978-3-662-07731-3
[3]  
Carl Bernd, 1990, ENTROPY COMPACTNESS
[4]  
Edmunds D. E., 1996, Cambridge Tracts in Mathematics
[5]  
Edmunds D.E., 2018, Spectral Theory and Differential Operators, Vsecond
[6]   FRACTALS, TREES AND THE NEUMANN LAPLACIAN [J].
EVANS, WD ;
HARRIS, DJ .
MATHEMATISCHE ANNALEN, 1993, 296 (03) :493-527
[7]   ENTROPY NUMBERS IN WEIGHTED FUNCTION-SPACES AND EIGENVALUE DISTRIBUTIONS OF SOME DEGENERATE PSEUDODIFFERENTIAL OPERATORS-I [J].
HAROSKE, D ;
TRIEBEL, H .
MATHEMATISCHE NACHRICHTEN, 1994, 167 :131-156
[8]  
Haroske DD, 2008, EMS TEXTB MATH, P1
[9]  
Mieth T., 2015, MATH NACHR, P1
[10]   Entropy and approximation numbers of embeddings of weighted Sobolev spaces [J].
Mieth, Therese .
JOURNAL OF APPROXIMATION THEORY, 2015, 192 :250-272