Hard Deterministic Particle Swarm Optimisation for Certain Result Solution

被引:1
作者
Thongkrairat, Somsin [1 ]
Chutchavong, Vanvisa [1 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Fac Engn, Dept Comp Engn, Bangkok, Thailand
来源
2021 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC) | 2021年
关键词
Optimisation; Particle Swarm Optimisation; Deterministic Method; Global Optimisation; Algorithm;
D O I
10.1109/ICEIC51217.2021.9369777
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic optimisation's performance is globally acknowledged for its flexibility, robustness and performance the result of optimisation is usually outstanding and acceptable. However, stochastic methods benefit from random variance to produce feasible results. However, there is one significant disadvantage when it comes to the certainty of results. The stochastic method may give an unsatisfied result. Even though it is an unlikely possibility, it can happen. Therefore, we propose an algorithm that eliminates this problem by changing the calculation core to a deterministic base. In this paper, we select Particle Swarm Optimisation (PSO) as the prototype algorithm and modify the particle moving method to generate an inevitable result. The results show that our process can produce a certain result solution, and the output from our deterministic algorithm is also acceptable, like the original algorithm.
引用
收藏
页数:4
相关论文
共 13 条
  • [1] Asvini M. S., 2014, 2014 IEEE INT C COMP, P1, DOI [10.1109/ICCIC. 2014.7238387, DOI 10.1109/ICCIC.2014.7238387]
  • [2] Biscani Francesco, 2020, **DATA OBJECT**, DOI 10.5281/zenodo.1045336
  • [3] Du Jiyong, 2011, 2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE), P325, DOI 10.1109/CSAE.2011.5952861
  • [4] Evtushenko Y., 2015, 2015 6 INT C MOD SIM, P1, DOI [10.1109/ICMSAO.2015.7152218, DOI 10.1109/ICMSAO.2015.7152218]
  • [5] Iwamura K., 1996, Journal of Information & Optimization Sciences, V17, P409
  • [6] Kall P., 1998, LECT NOTES EC MATH S, V458, DOI [10.1007/978-3-642-45767-8_20, DOI 10.1007/978-3-642-45767-8_20]
  • [7] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
  • [8] Kingma DP, 2014, ADV NEUR IN, V27
  • [9] A novel deterministic multi-agent solving method
    Kohinata, Kenta
    Kurihara, Takuya
    Shindo, Takuya
    Jin'no, Kenya
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1758 - 1763
  • [10] Grey Wolf Optimizer
    Mirjalili, Seyedali
    Mirjalili, Seyed Mohammad
    Lewis, Andrew
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2014, 69 : 46 - 61