EXISTENCE OF AN INVARIANT FORM UNDER A LINEAR MAP

被引:1
作者
Gongopadhyay, Krishnendu [1 ]
Mazumder, Sudip [2 ]
机构
[1] Indian Inst Sci Educ & Res IISER Mohali, Sect 81, Sas Nagar 140306, Punjab, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, India
关键词
Linear map; Hermitian form; isometry;
D O I
10.1007/s13226-017-0222-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic different from 2 and V be a vector space over F. Let J : alpha -> alpha(J) be a fixed involutory automorphism on F. In this paper we answer the following question: given an invertible linear map T : V -> V, when does the vector space V admit a T-invariant non-degenerate J-hermitian, resp. J-skew-hermitian, form?
引用
收藏
页码:211 / 220
页数:10
相关论文
共 8 条
[1]   On the existence of an invariant non-degenerate bilinear form under a linear map [J].
Gongopadhyay, Krishnendu ;
Kulkarni, Ravi S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) :89-103
[2]   On the conjugacy classes in the orthogonal and symplectic groups over algebraically closed fields [J].
Gongopadhyay, Krishnendu .
EXPOSITIONES MATHEMATICAE, 2010, 28 (04) :351-356
[3]  
Jacobson Nathan, 1975, GRADUATE TEXTS MATH
[4]  
Kulkarni RS, 2008, ASIAN J MATH, V12, P321
[5]   When does a linear map belong to at least one orthogonal or symplectic group? [J].
Pazzis, Clement de Seguins .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) :1385-1405
[6]   Canonical matrices of isometric operators on indefinite inner product spaces [J].
Sergeichuk, Vladimir V. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (01) :154-192
[7]  
Sergejchuk V.V., 1987, IZV AKAD NAUK SSSR M, V51, P1170
[8]  
Wall G.E., 1963, J. Aust. Math. Soc., V3, P1