Computational design of a crack-free aluminum alloy for additive manufacturing br

被引:26
作者
Dreano, Alixe [1 ]
Favre, Julien [1 ]
Desrayaud, Christophe [1 ]
Chanin-Lambert, Pauline [1 ]
Wimmer, Andreas [2 ]
Zaeh, Michael F. [2 ]
机构
[1] Univ Lyon, Ctr SMS, Dept PMM, Mines St Etienne,CNRS,UMR 5307 LGF, F-42023 St Etienne, France
[2] Tech Univ Munich, Inst Machine Tools & Ind Management, TUM Sch Engn & Design, Boltzmannstr 15, D-85748 Garching, Germany
关键词
Alloy design; Aluminum alloy; Hot-cracking; Laser-powder bed fusion; Microstructure; MECHANICAL-PROPERTIES; MICROSTRUCTURE; OPTIMIZATION; PARAMETERS; ALSI10MG; STEELS; MODEL;
D O I
10.1016/j.addma.2022.102876
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The design of new alloys adapted to LPBF and combining suitable mechanical strength together with a low cracking susceptibility is a promising way to produce defect-free parts made of aluminum. The current work proposes a design procedure relying on the decrease of the brittle temperature range to mitigate the hot cracking issue and additional optimization criteria concerning the phases fractions and the solid solution strengthening to preserve the mechanical strength and some ductility. The optimization functions are included in an aggregated genetic algorithm for a rapid and efficient identification of the optimal composition. The algorithm determined a promising alloy, with a brittle temperature range of only 9 degrees C, and mostly constituted of FCC phase (around 90%), with some Mg2Si and Al9FeNi precipitates. The alloy is found suitable for the LPBF process with no cracks observed. Hence, the criterion for the mitigation of hot cracking is validated. Mechanical results shown a high yield stress and ultimate trensile stress but an elongation at break quite low compared to conventional manu-factured aluminum alloys
引用
收藏
页数:14
相关论文
共 50 条
[1]   3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J].
Aboulkhair, Nesma T. ;
Simonelli, Marco ;
Parry, Luke ;
Ashcroft, Ian ;
Tuck, Christopher ;
Hague, Richard .
PROGRESS IN MATERIALS SCIENCE, 2019, 106
[2]  
Akopyan T.K., 2016, NON-FERROUS MET, P20, DOI [DOI 10.17580/NFM.2016.01.04, 10.17580/nfm.2016.01.04]
[3]   Selection strategies for materials and processes [J].
Ashby, MF ;
Bréchet, YJM ;
Cebon, D ;
Salvo, L .
MATERIALS & DESIGN, 2004, 25 (01) :51-67
[4]   A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting [J].
Aversa, Alberta ;
Lorusso, Massimo ;
Cattano, Giulio ;
Manfredi, Diego ;
Calignano, Flaviana ;
Ambrosio, Elisa P. ;
Biamino, Sara ;
Fino, Paolo ;
Lombardi, Mariangela ;
Pavese, Matteo .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 :1470-1478
[5]   Regulating microstructures and mechanical properties of Al-Fe-Ni alloys [J].
Bian, Zeyu ;
Liu, Yingtao ;
Dai, Shihan ;
Chen, Zhe ;
Wang, Mingliang ;
Chen, Dong ;
Wang, Haowei .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2020, 30 (01) :54-62
[6]   Development of a high strength Al-Zn-Si-Mg-Cu alloy for selective laser melting [J].
Casati, R. ;
Coduri, M. ;
Riccio, M. ;
Rizzi, A. ;
Vedani, M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 801 :243-253
[7]  
Clyne T.W., 1979, METALS SOC, P275
[8]   Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of neural network and desirability function [J].
Das, P. ;
Mukherjee, S. ;
Ganguly, S. ;
Bhattacharyay, B. K. ;
Datta, S. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (01) :104-110
[9]   Combinatorial approaches for the design of metallic alloys [J].
Deschamps, Alexis ;
Tancret, Franck ;
Benrabah, Imed-Eddine ;
De Geuser, Frederic ;
Van Landeghem, Hugo R. .
COMPTES RENDUS PHYSIQUE, 2018, 19 (08) :737-754
[10]  
Drezet J., 1999, MECAMAT INFOS, V22, P32