Quantum stochastic calculus on Boolean Fock space

被引:12
作者
Ben Ghorbal, A [1 ]
Schürmann, M [1 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
关键词
quantum stochastic calculus; Boolean independence; dilation; quantum dynamical semigroup;
D O I
10.1142/S0219025704001815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish a theory of stochastic integration with respect to the basic field operator processes in the Boolean case. This leads to a Boolean version of quantum Ito's product formula and has applications to the theory of dilations of quantum dynamical semigroups.
引用
收藏
页码:631 / 650
页数:20
相关论文
共 20 条
[1]   A REPRESENTATION FREE QUANTUM STOCHASTIC CALCULUS [J].
ACCARDI, L ;
FAGNOLA, F ;
QUAEGEBEUR, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 104 (01) :149-197
[2]  
[Anonymous], 1973, PROBABILITY INFORM T
[3]   FERMION ITO FORMULA AND STOCHASTIC EVOLUTIONS [J].
APPLEBAUM, DB ;
HUDSON, RL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (04) :473-496
[4]   Non-commutative notions of stochastic independence [J].
Ben Ghorbal, A ;
Schürmann, M .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 :531-561
[5]   Tensor product systems of Hilbert modules and dilations of completely positive semigroups [J].
Bhat, BVR ;
Skeide, M .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2000, 3 (04) :519-575
[6]  
BOZEJKO M, 1987, J REINE ANGEW MATH, V377, P170
[7]  
DOGAN H, 2000, THESIS U HEIDELBERG
[8]   TIME-ORTHOGONAL UNITARY DILATIONS AND NONCOMMUTATIVE FEYNMAN-KAC FORMULAS [J].
HUDSON, RL ;
ION, PDF ;
PARTHASARATHY, KR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (02) :261-280
[9]   QUANTUM ITOS FORMULA AND STOCHASTIC EVOLUTIONS [J].
HUDSON, RL ;
PARTHASARATHY, KR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (03) :301-323
[10]   STOCHASTIC INTEGRATION ON THE CUNTZ ALGEBRA 0-INFINITY [J].
KUMMERER, B ;
SPEICHER, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 103 (02) :372-408