Experimental quantum forgery of quantum optical money

被引:26
作者
Bartkiewicz, Karol [1 ,2 ,3 ,4 ]
Cernoch, Antonin [5 ]
Chimczak, Grzegorz [1 ]
Lemr, Karel [2 ,3 ]
Miranowicz, Adam [1 ,4 ]
Nori, Franco [4 ,6 ]
机构
[1] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
[2] Palacky Univ, Joint Lab Optic, RCPTM, 17 Listopadu 12, Olomouc 77207, Czech Republic
[3] Acad Sci Czech Republ, Inst Phys, 17 Listopadu 12, Olomouc 77207, Czech Republic
[4] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[5] Czech Acad Sci, Inst Phys, Joint Lab Optic PU & IP AS CR, 17 Listopadu 50A, Olomouc 77207, Czech Republic
[6] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
MONITORING SIGNAL DISTURBANCE; KEY DISTRIBUTION; CRYPTOGRAPHY; THEOREM;
D O I
10.1038/s41534-017-0010-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Unknown quantum information cannot be perfectly copied (cloned). This statement is the bedrock of quantum technologies and quantum cryptography, including the seminal scheme of Wiesner's quantum money, which was the first quantum-cryptographic proposal. Surprisingly, to our knowledge, quantum money has not been tested experimentally yet. Here, we experimentally revisit the Wiesner idea, assuming a banknote to be an image encoded in the polarization states of single photons. We demonstrate that it is possible to use quantum states to prepare a banknote that cannot be ideally copied without making the owner aware of only unauthorized actions. We provide the security conditions for quantum money by investigating the physically-achievable limits on the fidelity of 1-to-2 copying of arbitrary sequences of qubits. These results can be applied as a security measure in quantum digital right management.
引用
收藏
页数:8
相关论文
共 39 条
[1]  
Aaronson S., 2013, Theory of Computing, V9, P349, DOI [DOI 10.4086/TOC.2013.V009A009, 10.4086/toc.2013.v009a009]
[2]  
[Anonymous], 2010, arXiv: 0912.3825
[3]  
[Anonymous], 2010, ARXIV10100256
[4]  
[Anonymous], 1983, ACM SIGACT NEWS, DOI DOI 10.1145/1008908.1008920
[5]  
Arfken G., 1985, Mathematical Methods for Physicists
[6]   Optimizing completely positive maps using semidefinite programming [J].
Audenaert, K ;
De Moor, B .
PHYSICAL REVIEW A, 2002, 65 (03) :4
[7]  
Barnum H, 2002, ANN IEEE SYMP FOUND, P449, DOI 10.1109/SFCS.2002.1181969
[8]   Using quantum routers to implement quantum message authentication and Bell-state manipulation [J].
Bartkiewicz, Karol ;
Cernoch, Antonin ;
Lemr, Karel .
PHYSICAL REVIEW A, 2014, 90 (02)
[9]   Efficient amplification of photonic qubits by optimal quantum cloning [J].
Bartkiewicz, Karol ;
Cernoch, Antonin ;
Lemr, Karel ;
Soubusta, Jan ;
Stobinska, Magdalena .
PHYSICAL REVIEW A, 2014, 89 (06)
[10]   Experimental Eavesdropping Based on Optimal Quantum Cloning [J].
Bartkiewicz, Karol ;
Lemr, Karel ;
Cernoch, Antonin ;
Soubusta, Jan ;
Miranowicz, Adam .
PHYSICAL REVIEW LETTERS, 2013, 110 (17)