CONEAT SUBMODULES AND CONEAT-FLAT MODULES

被引:8
作者
Buyukasik, Engin [1 ]
Durgun, Yilmaz [2 ]
机构
[1] Izmir Inst Technol, Dept Math, TR-35430 Izmir, Turkey
[2] Bitlis Eren Univ, Dept Math, TR-13000 Bitlis, Turkey
关键词
neat submodule; coclosed submodule; coneat submodule; coneat-flat module; absolutely neat module;
D O I
10.4134/JKMS.2014.51.6.1305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism N -> S can be extended to a homomorphism M -> S. M is called coneat-flat if the kernel of any epimorphism Y -> M -> 0 is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V-ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if M+ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and fiat modules coincide.
引用
收藏
页码:1305 / 1319
页数:15
相关论文
共 22 条
[1]  
Buyukasik E., NEAT FLAT MODULES
[2]   ABSOLUTELY s-PURE MODULES AND NEAT-FLAT MODULES [J].
Buyukasik, Engin ;
Durgun, Yilmaz .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) :384-399
[3]   FLAT AND PROJECTIVE CHARACTER MODULES [J].
CHEATHAM, TJ ;
STONE, DR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (02) :175-177
[4]  
Clark J, 2006, FRONT MATH, P1
[5]   NEAT AND CONEAT SUBMODULES OF MODULES OVER COMMUTATIVE RINGS [J].
Crivei, Septimiu .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (02) :343-352
[6]  
Enochs E., 1976, CANAD MATH B, V19, P361, DOI [10.4153/CMB-1976-054-5, DOI 10.4153/CMB-1976-054-5]
[7]  
Enochs E.E., 2011, RELATIVE HOMOLOGICAL
[8]  
Fontana M., 2011, COMMUTATIVE ALGEBRA, P363
[9]   Neat submodules over integral domains [J].
Fuchs, Laszlo .
PERIODICA MATHEMATICA HUNGARICA, 2012, 64 (02) :131-143
[10]  
Genera lov A. I., 1978, MAT SBORNIK, V105, P463