Adaptive Control Using Interval Type-2 Fuzzy Logic

被引:9
|
作者
Zhou, Haibo [1 ]
Ying, Hao [2 ]
Duan, Ji'an [1 ]
机构
[1] Cent S Univ, Sch Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China
[2] Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48201 USA
来源
2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3 | 2009年
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
SYSTEMS; DESIGN;
D O I
10.1109/FUZZY.2009.5277302
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Type-2 (T2) fuzzy, systems have gained increasing attention in the recent years. There have been a number of T2 fuzzy control studies in the literature but only one of them is involved in adaptive control. The objective of this paper is to develop a new and theoretically rigorous interval T2 adaptive fuzzy controller for controlling uncertain systems. Our adaptive controller contains a T2 fuzzy system component that is mathematically proven to be capable of approximating any continuous function to an), degree of accuracy (in contrast, the sole work in the literature just assumes the universal approximation ability without showing any proof). Based on the Lyapunov method, we design the adaptive laws with mathematical proofs for stability and convergence of the closed-loop system. The controller updates its parameters online to control an uncertain system and track a reference trajectory. Our simulation study involves a nonlinear inverted pendulum. The simulation results demonstrate that the interval T2 adaptive fuzzy controller can achieve the system stability as designed and maintain good tracking performance. We also use the simulation to study the system performance under noise and disturbance.
引用
收藏
页码:836 / +
页数:2
相关论文
共 50 条
  • [1] Adaptive Interval Type-2 Fuzzy Logic Control for PMSM Drives With a Modified Reference Frame
    Chaoui, Hicham
    Khayamy, Mehdy
    Aljarboua, Abdullah Abdulaziz
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (05) : 3786 - 3797
  • [2] Adaptive Interval Type-2 Fuzzy Logic Control of a Three Degree-of-Freedom Helicopter
    Chaoui, Hicham
    Yadav, Sumit
    Ahmadi, Rosita Sharif
    Bouzid, Allal El Moubarek
    ROBOTICS, 2020, 9 (03)
  • [3] An interval type-2 fuzzy logic toolbox for control applications
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 61 - +
  • [4] Adaptive Interval Type-2 Fuzzy Logic Observer for Dynamic Positioning
    Chen, Xue Tao
    Tan, Woei Wan
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [5] Tracking Control of Surface Vessels via Adaptive Backstepping Interval Type-2 Fuzzy Logic Control
    Chen, Xue Tao
    Tan, Woei Wan
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [6] Fuzzy estimation based on type-2 fuzzy logic for adaptive Control
    Chafaa, Kheireddine
    Slimane, Noureddine
    Khireddine, Mohamed Salah
    Ghanai, Mouna
    2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [7] Model-based control using interval type-2 fuzzy logic systems
    Antao, Romulo
    Mota, Alexandre
    Martins, Rui Escadas
    SOFT COMPUTING, 2018, 22 (02) : 607 - 620
  • [8] Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms
    Castillo, O.
    Melin, P.
    Alanis, A.
    Montiel, O.
    Sepulveda, R.
    SOFT COMPUTING, 2011, 15 (06) : 1145 - 1160
  • [9] A review on interval type-2 fuzzy logic applications in intelligent control
    Castillo, Oscar
    Melin, Patricia
    INFORMATION SCIENCES, 2014, 279 : 615 - 631
  • [10] Nonlinear Altitude Control of a Quadcopter Drone Using Interval Type-2 Fuzzy Logic
    Al-Mahturi, Ayad
    Santoso, Fendy
    Garratt, Matthew A.
    Anavatti, Sreenatha G.
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 236 - 241