A geometric construction of solutions of the strict dKP(Λ0) hierarchy

被引:7
作者
Helminck, G. F. [1 ]
Poberezhny, V. A. [2 ]
Polenkova, S. V. [3 ]
机构
[1] UvA, KdV Inst, POB 94248, NL-1090 GE Amsterdam, Netherlands
[2] Natl Res Univ, HSE, Usacheva Str 6, Moscow 119048, Russia
[3] Univ Twente, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands
关键词
Pseudo difference operators; Compatible Lax equations; Zero curvature form; Linearizations; Oscillating and wave matrices; Flag varieties;
D O I
10.1016/j.geomphys.2018.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a previous paper we associated to each invertible constant pseudo difference operator Lambda(0) of degree one, two integrable hierarchies in the algebra of pseudo difference operators Ps Delta, the so-called dKP(Lambda(0)) hierarchy and its strict version. We show here first that both hierarchies can be described as the compatibility conditions for a proper linearization. Next we present a geometric framework for the construction of solutions of the hierarchies, i.e. we associate to each hierarchy an infinite dimensional variety such that to each point of the variety one can construct a solution of the corresponding hierarchy. This yields a Segal-Wilson type framework for all these integrable hierarchies. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 203
页数:15
相关论文
共 13 条
[1]   Vertex operator solutions to the discrete KP-hierarchy [J].
Adler, M ;
van Moerbeke, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) :185-210
[2]  
[Anonymous], 1977, RUSSIAN MATH SURVEYS, DOI [DOI 10.1070/RM1977V032N06ABEH003862, 10.1070/RM1977v032n06ABEH003862]
[3]  
[Anonymous], 1984, Adv. Stud. Pure Math.
[4]  
[Anonymous], 1977, Funct. Anal. Appl
[5]  
[Anonymous], 1970, ERGEBNISSE MATH IHRE
[6]  
Date E., 1983, P RIMS S NONL INT SY, P41
[7]  
Haine L, 2000, INT MATH RES NOTICES, V2000, P281
[8]   Geometric Solutions of the Strict KP Hierarchy [J].
Helminck, G. F. ;
Panasenko, E. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 198 (01) :48-68
[9]   Integrable deformations in the algebra of pseudodifferential operators from a Lie algebraic perspective [J].
Helminck, G. F. ;
Helminck, A. G. ;
Panasenko, E. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 174 (01) :134-153
[10]  
Mumford David., 1977, P INT S ALGEBRAIC GE, P115