Gevrey vectors of multi-quasi-elliptic systems

被引:9
作者
Bouzar, C [1 ]
Chaili, R
机构
[1] Univ Doran Esenia, Dept Math, Oran, Algeria
[2] USTO, Dept Math, Oran, Algeria
关键词
systems of differential operators; Newton polyhedron; multi-quasi-ellipticity; Gevrey vectors; Gevrey spaces; Gevrey regularity;
D O I
10.1090/S0002-9939-02-06799-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the multi-quasi-ellipticity is a necessary and sufficient condition for the property of elliptic iterates to hold for multi-quasi-homogenous differential operators.
引用
收藏
页码:1565 / 1572
页数:8
相关论文
共 8 条
[1]  
[Anonymous], B UMI S
[2]  
Bolley P., 1979, Czechoslovak Math. J., V29, P649
[3]  
Bolley P., 1989, REND SEMIN MAT U POL, V45, P1
[4]  
Bouzar C, 2001, ARCH MATH, V76, P57, DOI 10.1007/s000130050542
[5]  
Gindikin S., 1992, METHOD NEWTONS POLYH
[6]  
Metivier Guy, 1978, COMMUN PART DIFF EQ, V3, P827, DOI 10.1080/03605307808820078
[7]  
Zanghirati L., 1981, B UMI, V5, P411
[8]  
ZANGHIRATI L, 1982, B UNIONE MAT ITAL, V6, P137