Reduction of leukemic burden via bone-targeted nanoparticle delivery of an inhibitor of C-chemokine (C-C motif) ligand 3 (CCL3) signaling

被引:14
作者
Ackun-Farmmer, Marian A. [1 ,2 ,3 ]
Soto, Celia A. [4 ]
Lesch, Maggie L. [4 ]
Byun, Daniel [2 ,3 ]
Yang, Lila [5 ]
Calvi, Laura M. [2 ,3 ,6 ,7 ]
Benoit, Danielle S. W. [1 ,2 ,3 ,8 ,9 ]
Frisch, Benjamin J. [1 ,2 ,3 ,4 ,7 ]
机构
[1] Univ Rochester, Dept Biomed Engn, Rochester, NY USA
[2] Univ Rochester, Med Ctr, Dept Orthopaed, Rochester, NY 14642 USA
[3] Univ Rochester, Med Ctr, Ctr Musculoskeletal Res, Rochester, NY 14642 USA
[4] Univ Rochester, Dept Pathol & Lab Med, Rochester, NY USA
[5] New York Inst Technol, Coll Osteopath Med, New York, NY USA
[6] Univ Rochester, Med Ctr, Dept Med, Div Endocrine, Rochester, NY 14642 USA
[7] Univ Rochester, Sch Med & Dent, Wilmot Canc Inst, Rochester, NY USA
[8] Univ Rochester, Mat Sci Program, Rochester, NY USA
[9] Univ Rochester, Dept Chem Engn, Rochester, NY USA
基金
美国国家科学基金会;
关键词
nanoparticles; acute myeloid leukemia; peptide; drug delivery; small molecule drug; MIP1‐ alpha; ACUTE MYELOID-LEUKEMIA; MESENCHYMAL STROMAL CELLS; IN-VIVO; MARROW NICHE; STEM-CELLS; FUNCTIONAL INHIBITION; DRUG-DELIVERY; MURINE MODEL; MOUSE MODEL; DISEASE;
D O I
10.1096/fj.202000938RR
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Leukemias are challenging diseases to treat due, in part, to interactions between leukemia cells and the bone marrow microenvironment (BMME) that contribute significantly to disease progression. Studies have shown that leukemic cells secrete C-chemokine (C-C motif) ligand 3 (CCL3), to disrupt the BMME resulting in loss of hematopoiesis and support of leukemic cell survival and proliferation. In this study, a murine model of blast crisis chronic myelogenous leukemia (bcCML) that expresses the translocation products BCR/ABL and Nup98/HoxA9 was used to determine the role of CCL3 in BMME regulation. Leukemic cells derived from CCL3(-/-) mice were shown to minimally engraft in a normal BMME, thereby demonstrating that CCL3 signaling was necessary to recapitulate bcCML disease. Further analysis showed disruption in hematopoiesis within the BMME in the bcCML model. To rescue the altered BMME, therapeutic inhibition of CCL3 signaling was investigated using bone-targeted nanoparticles (NP) to deliver Maraviroc, an inhibitor of C-C chemokine receptor type 5 (CCR5), a CCL3 receptor. NP-mediated Maraviroc delivery partially restored the BMME, significantly reduced leukemic burden, and improved survival. Overall, our results demonstrate that inhibiting CCL3 via CCR5 antagonism is a potential therapeutic approach to restore normal hematopoiesis as well as reduce leukemic burden within the BMME.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B [J].
Frisch, Benjamin J. ;
Hoffman, Corey M. ;
Latchney, Sarah E. ;
LaMere, Mark W. ;
Myers, Jason ;
Ashton, John ;
Li, Allison J. ;
Saunders, Jerry, II ;
Palis, James ;
Perkins, Archibald S. ;
McCabe, Amanda ;
Smith, Julianne N. P. ;
McGrath, Kathleen E. ;
Rivera-Escalera, Fatima ;
McDavid, Andrew ;
Liesveld, Jane L. ;
Korshunov, Vyacheslav A. ;
Elliott, Michael R. ;
MacNamara, Katherine C. ;
Becker, Michael W. ;
Calvi, Laura M. .
JCI INSIGHT, 2019, 4 (10)
[22]   Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia [J].
Frisch, Benjamin J. ;
Ashton, John M. ;
Xing, Lianping ;
Becker, Michael W. ;
Jordan, Craig T. ;
Calvi, Laura M. .
BLOOD, 2012, 119 (02) :540-550
[23]   Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia [J].
Geyh, S. ;
Rodriguez-Paredes, M. ;
Jaeger, P. ;
Khandanpour, C. ;
Cadeddu, R-P ;
Gutekunst, J. ;
Wilk, C. M. ;
Fenk, R. ;
Zilkens, C. ;
Hermsen, D. ;
Germing, U. ;
Kobbe, G. ;
Lyko, F. ;
Haas, R. ;
Schroeder, T. .
LEUKEMIA, 2016, 30 (03) :683-691
[24]   The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European Countries [J].
Hoffmann, V. S. ;
Baccarani, M. ;
Hasford, J. ;
Lindoerfer, D. ;
Burgstaller, S. ;
Sertic, D. ;
Costeas, P. ;
Mayer, J. ;
Indrak, K. ;
Everaus, H. ;
Koskenvesa, P. ;
Guilhot, J. ;
Schubert-Fritschle, G. ;
Castagnetti, F. ;
Di Raimondo, F. ;
Lejniece, S. ;
Griskevicius, L. ;
Thielen, N. ;
Sacha, T. ;
Hellmann, A. ;
Turkina, A. G. ;
Zaritskey, A. ;
Bogdanovic, A. ;
Sninska, Z. ;
Zupan, I. ;
Steegmann, J-L ;
Simonsson, B. ;
Clark, R. E. ;
Covelli, A. ;
Guidi, G. ;
Hehlmann, R. .
LEUKEMIA, 2015, 29 (06) :1336-1343
[25]   Prognostic Factors and Survival Outcomes in Patients With Chronic Myeloid Leukemia in Blast Phase in the Tyrosine Kinase Inhibitor Era: Cohort Study of 477 Patients [J].
Jain, Preetesh ;
Kantarjian, Hagop M. ;
Ghorab, Ahmad ;
Sasaki, Koji ;
Jabbour, Elias J. ;
Nogueras Gonzalez, Graciela ;
Kanagal-Shamanna, Rashmi ;
Issa, Ghayas C. ;
Garcia-Manero, Guillermo ;
Devendra, K. C. ;
Dellasala, Sara ;
Pierce, Sherry ;
Konopleva, Marina ;
Wierda, William G. ;
Verstovsek, Srdan ;
Daver, Naval G. ;
Kadia, Tapan M. ;
Borthakur, Gautam ;
O'Brien, Susan ;
Estrov, Zeev ;
Ravandi, Farhad ;
Cortes, Jorge E. .
CANCER, 2017, 123 (22) :4391-4402
[26]   Extended time-lapse in vivo imaging of tibia bone marrow to visualize dynamic hematopoietic stem cell engraftment [J].
Kim, S. ;
Lin, L. ;
Brown, Gaj ;
Hosaka, K. ;
Scott, E. W. .
LEUKEMIA, 2017, 31 (07) :1582-1592
[27]   Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts [J].
Krevvata, Maria ;
Silva, Barbara C. ;
Manavalan, John S. ;
Galan-Diez, Marta ;
Kode, Aruna ;
Matthews, Brya Grace ;
Park, David ;
Zhang, Chiyuan A. ;
Galili, Naomi ;
Nickolas, Thomas L. ;
Dempster, David W. ;
Dougall, William ;
Teruya-Feldstein, Julie ;
Economides, Aris N. ;
Kalajzic, Ivo ;
Raza, Azra ;
Berman, Ellin ;
Mukherjee, Siddhartha ;
Bhagat, Govind ;
Kousteni, Stavroula .
BLOOD, 2014, 124 (18) :2834-2846
[28]   Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion [J].
Kumar, B. ;
Garcia, M. ;
Weng, L. ;
Jung, X. ;
Murakami, J. L. ;
Hu, X. ;
McDonald, T. ;
Lin, A. ;
Kumar, A. R. ;
DiGiusto, D. L. ;
Stein, A. S. ;
Pullarkat, V. A. ;
Hui, S. K. ;
Carlesso, N. ;
Kuo, Y-H ;
Bhatia, R. ;
Marcucci, G. ;
Chen, C-C .
LEUKEMIA, 2018, 32 (03) :575-587
[29]   Identification and characterization of a potent, selective, and orally active antagonist of the CC chemokine receptor-1 [J].
Liang, M ;
Mallari, C ;
Rosser, M ;
Ng, HP ;
May, K ;
Monahan, S ;
Bauman, JG ;
Islam, I ;
Ghannam, A ;
Buckman, B ;
Shaw, K ;
Wei, GP ;
Xu, W ;
Zhao, Z ;
Ho, E ;
Shen, J ;
Oanh, H ;
Subramanyam, B ;
Vergona, R ;
Taub, D ;
Dunning, L ;
Harvey, S ;
Snider, RM ;
Hesselgesser, J ;
Morrissey, MM ;
Perez, HD ;
Horuk, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (25) :19000-19008
[30]   Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine:daunorubicin formulation, in bone marrow xenografts [J].
Lim, Wah-Seng ;
Tardi, Paul G. ;
Dos Santos, Nancy ;
Xie, Xiaowei ;
Fan, Mannie ;
Liboiron, Barry D. ;
Huang, Xiaoping ;
Harasym, Troy O. ;
Bermudes, David ;
Mayer, Lawrence D. .
LEUKEMIA RESEARCH, 2010, 34 (09) :1214-1223