SYMPLECTIC EMBEDDINGS AND THE LAGRANGIAN BIDISK

被引:14
作者
Barros Ramos, Vinicius Gripp [1 ]
机构
[1] Inst Nacl Matemat Pura & Aplicada, Rio De Janeiro, Brazil
基金
欧洲研究理事会;
关键词
D O I
10.1215/00127094-0000011X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we obtain sharp obstructions to the symplectic embedding of the Lagrangian bidisk into four-dimensional balls, ellipsoids, and symplectic polydisks. We prove, in fact, that the interior of the Lagrangian bidisk is symplectomorphic to a concave toric domain by using ideas that come from billiards on a round disk. In particular, we answer a question of Ostrover. We also obtain sharp obstructions to some embeddings of ellipsoids into the Lagrangian bidisk.
引用
收藏
页码:1703 / 1738
页数:36
相关论文
共 15 条
[1]   Periodic Bounce Orbits of Prescribed Energy [J].
Albers, Peter ;
Mazzucchelli, Marco .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (14) :3289-3314
[2]   Bounds for Minkowski Billiard Trajectories in Convex Bodies [J].
Artstein-Avidan, Shiri ;
Ostrover, Yaron .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (01) :165-193
[3]  
BENCI V, 1989, ANN I H POINCARE-AN, V6, P73
[4]   Symplectic embeddings into four-dimensional concave toric domains [J].
Choi, Keon ;
Cristofaro-Gardiner, Daniel ;
Frenkel, David ;
Hutchings, Michael ;
Ramos, Vinicius Gripp Barros .
JOURNAL OF TOPOLOGY, 2014, 7 (04) :1054-1076
[5]  
CRISTOFAROGARDINER D., 1704, ARXIV14094378V2MATHS
[6]   PSEUDO HOLOMORPHIC-CURVES IN SYMPLECTIC-MANIFOLDS [J].
GROMOV, M .
INVENTIONES MATHEMATICAE, 1985, 82 (02) :307-347
[7]  
Hutchings M, 2011, J DIFFER GEOM, V88, P231
[8]  
Landry M, 2015, Involve, V8, P665
[9]   BLOW UPS AND SYMPLECTIC EMBEDDINGS IN DIMENSION-4 [J].
MCDUFF, D .
TOPOLOGY, 1991, 30 (03) :409-421
[10]  
McDuff D, 2004, AM MATH SOC C PUBL, V52