Robust a posteriori error estimates for HDG method for convection-diffusion equations

被引:31
作者
Chen, Huangxin [1 ,2 ]
Li, Jingzhi [3 ]
Qiu, Weifeng [4 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R China
[3] South Univ Sci & Technol China, Fac Sci, Shenzhen 518055, Peoples R China
[4] City Univ Hong Kong, Dept Math, 83 Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
关键词
hybridizable discontinuous Galerkin method; a posteriori error estimates; convection-diffusion equations; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT METHODS; RESIDUAL-FREE BUBBLES; DPG METHOD; ADVECTION; APPROXIMATION; DISCRETIZATIONS;
D O I
10.1093/imanum/drv009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a robust a posteriori error estimator for the hybridizable discontinuous Galerkin method for convection-diffusion equations with dominant convection. The reliability and efficiency of the estimator are established for the error measured in an energy norm. The energy norm is uniformly bounded even when the diffusion coefficient tends to zero. The estimators are robust in the sense that the upper and lower bounds of error are uniformly bounded with respect to the diffusion coefficient. A weighted test function technique and the Oswald interpolation are key ingredients in the analysis. Numerical results verify the robustness of the proposed a posteriori error estimator.
引用
收藏
页码:437 / 462
页数:26
相关论文
共 54 条
[1]  
Adams R.A., 1975, Sobolev Spaces
[2]  
Ainsworth M, 2000, WILEY INTERSCIENCE S
[3]  
[Anonymous], 1982, THESIS CHALMERS U TE
[4]  
[Anonymous], 1983, SINGULARLY PERTURBED
[5]   DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DIFFUSION-REACTION PROBLEMS [J].
Ayuso, Blanca ;
Marini, L. Donatella .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1391-1420
[6]   Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework [J].
Badia, Santiago ;
Codina, Ramon .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :2159-2197
[7]   A priori error analysis of residual-free bubbles for advection-diffusion problems [J].
Brezzi, F ;
Hughes, TJR ;
Marini, LD ;
Russo, A ;
Süli, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (06) :1933-1948
[8]  
Brezzi F, 2000, NUMER MATH, V85, P31, DOI 10.1007/s002110000128
[9]   A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form [J].
Broersen, Dirk ;
Stevenson, Rob P. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (01) :39-73
[10]   A robust Petrov-Galerkin discretisation of convection-diffusion equations [J].
Broersen, Dirk ;
Stevenson, Rob .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (11) :1605-1618