Fractal methods and cardiac interbeat time series

被引:0
作者
Guzman-Vargas, L.
Calleja-Quevedo, E.
Angulo-Brown, R.
机构
[1] Inst Politecn Nacl, Unidad Interdisciplinaria Ingn & Tecnol Avanzadas, Mexico City 07340, DF, Mexico
[2] Inst Politecn Nacl, Escuela Super Fis & Matemat, Dept Fis, Mexico City 07738, DF, Mexico
[3] Univ Nacl Autonoma Mexico, IZTACALA, FES Med, Tlalnepantla, Estado Mexico, Mexico
关键词
fractals; heart; time series;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyzed cardiac beat-to-beat time series arising from three different groups: healthy young and healthy elderly subjects and patients with congestive heart failure. We briefly describe two methods used to analyze cardiac interbeat series: the power spectral method and the detrended fluctuation analysis (DFA). We also use the Higuchi method to calculate the fractal dimension of these time series. We find that the fractal dimension is different for each group, healthy young subjects can be characterized by a single value of fractal dimension, whereas in the cases of healthy elderly subjects and patients with congestive heart failure a crossover behavior in fractal dimension is oberved. Our results are then qualitatively compared to those found by means of other fractal methods, the power spectrum method and detrended fluctuations analysis, respectively.
引用
收藏
页码:122 / 127
页数:6
相关论文
共 50 条
  • [1] Irreversibility in the Interbeat Interval Time Series and Efficiency of the Cardiac Cycle
    Munoz-Diosdado, A.
    Alonso-Martinez, A.
    Martinez-Hernandez, G.
    Ramirez-Hernandez, L.
    5TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, PTS 1 AND 2, 2012, 37 : 497 - 500
  • [2] Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis
    Cui, Huizi
    Zhou, Lingge
    Li, Yan
    Kang, Bingyi
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [3] A comparison between spectral and fractal methods in electrotelluric time series
    de la Torre, FC
    Ramírez-Rojas, A
    Pavía-Miller, CG
    Angulo-Brown, F
    Yépez, E
    Peralta, JA
    REVISTA MEXICANA DE FISICA, 1999, 45 (03) : 298 - 302
  • [4] USING FUZZY AND FRACTAL METHODS FOR ANALYZING MARKET TIME SERIES
    Kroha, P.
    Lauschke, M.
    ICFC 2010/ ICNC 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION AND INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION, 2010, : 85 - 92
  • [5] Some cases of crossover behavior in heart interbeat and electroseismic time series
    Muñoz-Diosdado, A
    Guzmán-Vargas, L
    Ramírez-Rojas, A
    Del Río-Correa, JL
    Angulo-Brown, F
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2005, 13 (04) : 253 - 263
  • [6] Classification of Interbeat Interval Time-Series Using Attention Entropy
    Yang, Jiawei
    Choudhary, Gulraiz I.
    Rahardja, Susanto
    Franti, Pasi
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) : 321 - 330
  • [7] A COMPARATIVE STUDY OF VALIDITY RANGES OF SOME FRACTAL METHODS OF TIME SERIES ANALYSIS
    Galvez-Coyt, G.
    Munoz-Diosdado, A.
    Del Rio-Correa, J. L.
    Angulo-Brown, F.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (02) : 235 - 246
  • [8] Roughness as a Fractal Property in Univariate Time Series Data
    Koopmans, Matthijs
    NONLINEAR DYNAMICS PSYCHOLOGY AND LIFE SCIENCES, 2023, 27 (02) : 149 - 168
  • [9] Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods
    Caccia, DC
    Percival, D
    Cannon, MJ
    Raymond, G
    Bassingthwaighte, JB
    PHYSICA A, 1997, 246 (3-4): : 609 - 632
  • [10] ON THE DISTINCTION BETWEEN FRACTAL AND SEASONAL DEPENDENCIES IN TIME SERIES DATA
    Koopmans, Matthijs
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)