The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study

被引:43
|
作者
Long, Linshuang [1 ]
Ye, Hong [1 ]
机构
[1] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Anhui, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
中国国家自然科学基金;
关键词
PHASE-CHANGE MATERIALS; OF-THE-ART; BUILDING ENVELOPE; BEHAVIOR; COMFORT; INERTIA; HOUSE;
D O I
10.1038/srep24181
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Experimental thermal characterization of timber frame exterior wall using reed straws as heat insulation materials
    Georgescu, Sergiu-Valeriu
    Cosereanu, Camelia
    Fotin, Adriana
    Brenci, Luminita-Maria
    Costiuc, Liviu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 138 (04) : 2505 - 2513
  • [32] INTEGRATION OF THERMAL ENERGY STORAGE MATERIALS IN HEAT PIPE EVACUATED TUBE SOLAR COLLECTOR SYSTEMS FOR ENHANCED SOLAR THERMAL PERFORMANCE
    Hachim, Dhafer Manea
    Eidan, Adel A.
    Alshukri, Mohammed J.
    Al-Fahham, Mohamed
    Alsahlani, Assaad
    Al-Manea, Ahmed
    Al-Rbaihat, Raed
    Alahmer, Ali
    COMPUTATIONAL THERMAL SCIENCES, 2024, 16 (06): : 59 - 85
  • [33] Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications
    Kou, Yan
    Wang, Siyu
    Luo, Jipeng
    Sun, Keyan
    Zhang, Jian
    Tan, Zhicheng
    Shi, Quan
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2019, 128 : 259 - 274
  • [34] Experimental Study on Performance of Shell-in-tube Latent Heat Thermal Energy Storage System
    Zhang, Teng-Teng
    Qu, Zhi-Guo
    Xu, Hong-Tao
    Luo, Zhu-Qing
    Zhang, Jian-Fei
    Miao, Yu-Bo
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2021, 42 (09): : 2345 - 2351
  • [35] Experimental study on the effect of rotation on melting performance of shell-and-tube latent heat thermal energy storage unit
    Yang, Chao
    Zheng, Zhang-Jing
    Cai, Xiao
    Xu, Yang
    APPLIED THERMAL ENGINEERING, 2022, 215
  • [36] Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges
    Sadeghi, Gholamabbas
    ENERGY STORAGE MATERIALS, 2022, 46 : 192 - 222
  • [37] Heat pump water heater enhanced with phase change materials thermal energy storage: Modeling study
    Sun, Jian
    Nawaz, Kashif
    Rendall, Joe
    Elatar, Ahmed
    Brechtl, Jamieson
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 146
  • [38] Thermal performance analysis of arc-shaped fins of horizontal latent heat thermal energy storage system
    Wang, Chuang
    Yao, Shouguang
    Chen, Xiya
    Yan, Xuan
    Zhan, Xiaoyv
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2025, 112
  • [39] From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials
    Li, Yuanqing
    Samad, Yarjan Abdul
    Polychronopoulou, Kyriaki
    Alhassan, Saeed M.
    Liao, Kin
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (21) : 7759 - 7765
  • [40] Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures
    Ge, Zhiwei
    Ye, Feng
    Ding, Yulong
    CHEMSUSCHEM, 2014, 7 (05) : 1318 - 1325