The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study

被引:43
|
作者
Long, Linshuang [1 ]
Ye, Hong [1 ]
机构
[1] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Anhui, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
中国国家自然科学基金;
关键词
PHASE-CHANGE MATERIALS; OF-THE-ART; BUILDING ENVELOPE; BEHAVIOR; COMFORT; INERTIA; HOUSE;
D O I
10.1038/srep24181
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Performance evaluation of a dynamic wall integrated with active insulation and thermal energy storage systems
    Iffa, Emishaw
    Hun, Diana
    Salonvaara, Mikael
    Shrestha, Som
    Lapsa, Melissa
    JOURNAL OF ENERGY STORAGE, 2022, 46
  • [2] Experimental and numerical study on thermal performance of energy storage interior wall with phase change materials
    Guo, Juanli
    Tan, Chuning
    Zhang, Zhongrui
    Zhao, Wenli
    Li, Mingyuan
    Zhang, Kaiao
    Wang, Zhoupeng
    ENERGY AND BUILDINGS, 2025, 326
  • [3] A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage
    Nkhonjera, Lameck
    Bello-Ochende, Tunde
    John, Geoffrey
    King'ondu, Cecil K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 75 : 157 - 167
  • [4] Thermal insulation performance of buildings with phase-change energy-storage wall structures
    Zhang, Yichao
    Zhou, Chonghui
    Liu, Min
    Li, Xuan
    Liu, Tao
    Liu, Zhicheng
    JOURNAL OF CLEANER PRODUCTION, 2024, 438
  • [5] Effects of external insulation component on thermal performance of a Trombe wall with phase change materials
    Liu, Yan
    Hou, Liqiang
    Yang, Yidong
    Feng, Yinping
    Yang, Liu
    Gao, Qinglong
    SOLAR ENERGY, 2020, 204 (204) : 115 - 133
  • [6] A review and evaluation of thermal insulation materials and methods for thermal energy storage systems
    Villasmil, Willy
    Fischer, Ludger J.
    Worlitschek, Jorg
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 103 : 71 - 84
  • [7] Thermal performance of a plate-type latent heat thermal energy storage heat exchanger-An experimental investigation and simulation study
    Li, Jie
    Zhang, Yuan
    Peng, Zian
    Zhang, Xiaofeng
    Zhai, John
    Luo, Yongqiang
    Liu, Baochang
    Sun, Xiaoqin
    Al-Saadi, Saleh Nasser
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [8] Performance study and heating simulation on novel latent heat thermal energy storage device suit for air source heat pump
    Lu, Shilei
    Huang, Shengying
    Wang, Ran
    Yu, Zewen
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [9] Heat capacity study of fatty acids as phase change materials for thermal energy storage
    Xie, Zhuoxue
    Yan, Huimin
    Dai, Henan
    Kou, Yan
    Yan, Xuemei
    Tian, Ying
    Shi, Quan
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2024, 197
  • [10] Thermal performance analysis of composite phase change materials for energy storage solar heat pump
    Wu W.
    Chen L.
    Wang X.
    Gu M.
    Dai S.
    Meng Z.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (13): : 206 - 212