FEMTOSECOND TRANSIENT ABSORPTION SPECTROSCOPY OF MAGHEMITE NANOPARTICLES LOADED WITH GOLD NANOPARTICLES

被引:1
作者
Okazaki, Masahiro [1 ]
Ishii, Yusuke [1 ]
Furube, Akihiro [1 ]
机构
[1] Tokushima Univ, Dept Opt Sci, 2-1 Minamijosanjima Cho, Tokushima 7708506, Japan
来源
MATERIALS PHYSICS AND MECHANICS | 2019年 / 42卷 / 05期
关键词
transient absorption spectroscopy; iron oxide; Au nanoparticles; photocatalyst; HEMATITE PHOTOANODES; RECOMBINATION; ULTRAFAST; NANOTUBES; MECHANISM; BACK;
D O I
10.18720/MPM.4252019_3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photocatalytic water splitting is very useful for solar energy conversion. Iron oxides are attracting a lot of interests due to absorption in the visible region. However, iron oxides have poor conductivity. As one of solutions, the photocatalytic performance may be enhanced with loaded gold nanoparticles (Au-NP) by the characteristic optical absorption and the charge trapping nature. In this study, hybrid material of maghemite (gamma-Fe2O3) and Au-NP (denoted as Au-Fe2O3) was prepared and the photo-generated carrier dynamics was revealed by femtosecond transient absorption (TA) spectroscopy. The hybrid material was prepared by mixing maghemite powder into 40 nm Au-NP aqueous solution. TA decay of Au-Fe2O3 indicates faster decay and suggests occurrence of hole transfer from maghemite to Au-NP, which can suppress the charge recombination and may result in enhancement of the photocatalytic reactivity.
引用
收藏
页码:511 / 516
页数:6
相关论文
共 21 条
[1]   Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes [J].
Barroso, Monica ;
Pendlebury, Stephanie R. ;
Cowan, Alexander J. ;
Durrant, James R. .
CHEMICAL SCIENCE, 2013, 4 (07) :2724-2734
[2]   The study of carrier transfer mechanism for nanostructural hematite photoanode for solar water splitting [J].
Chen, Yen-Jhih ;
Chen, Liang-Yih .
APPLIED ENERGY, 2016, 164 :924-933
[3]   Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles [J].
Cherepy, NJ ;
Liston, DB ;
Lovejoy, JA ;
Deng, HM ;
Zhang, JZ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (05) :770-776
[4]   Ultrafast plasmon induced electron injection mechanism in gold-TiO2 nanoparticle system [J].
Du, Luchao ;
Furube, Akihiro ;
Hara, Kohjiro ;
Katoh, Ryuzi ;
Tachiya, Masanori .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2013, 15 :21-30
[5]   Nanostructured hematite photoelectrochemical electrodes prepared by the low temperature thermal oxidation of iron [J].
Hiralal, Pritesh ;
Saremi-Yarahmadi, Sina ;
Bayer, Bernhard C. ;
Wang, Haolan ;
Hofmann, Stephan ;
Wijayantha, K. G. Upul ;
Amaratunga, Gehan A. J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (07) :1819-1825
[6]   Photocatalytic magnetic separable beads for chromium (VI) reduction [J].
Idris, Ani ;
Hassan, Nursia ;
Ismail, Nur Suriani Mohd ;
Misran, Effaliza ;
Yusof, Noordin Mohd ;
Ngomsik, Audrey-Flore ;
Bee, Agnes .
WATER RESEARCH, 2010, 44 (06) :1683-1688
[7]   Water Oxidation on Hematite Photoelectrodes: Insight into the Nature of Surface States through In Situ Spectroelectrochernistry [J].
Klahr, Benjamin ;
Hamann, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (19) :10393-10399
[8]   Nano Gold Rush: On the Origin of the Photocurrent Enhancement in Hematite Photoanodes Decorated with Gold Nanoparticles [J].
Koren, Moran Gross ;
Dotan, Hen ;
Rothschild, Avner .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (28) :15042-15051
[9]   Back Electron-Hole Recombination in Hematite Photoanodes for Water Splitting [J].
Le Formal, Florian ;
Pendlebury, Stephanie R. ;
Cornuz, Maurin ;
Tilley, S. David ;
Graetzel, Michael ;
Durrant, James R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (06) :2564-2574
[10]   Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array [J].
Li, Jiangtian ;
Cushing, Scott K. ;
Zheng, Peng ;
Meng, Fanke ;
Chu, Deryn ;
Wu, Nianqiang .
NATURE COMMUNICATIONS, 2013, 4