Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process

被引:5
作者
Nath, Bhabesh Kumar [1 ]
Khan, Aziz [1 ]
Chutia, Joyanti [1 ]
Pal, Arup Ratan [1 ]
Bailung, Heremba [1 ]
Sen Sarma, Neelotpal [1 ]
Chowdhury, Devasish [1 ]
Adhikary, Nirab Chandra [1 ]
机构
[1] Inst Adv Study Sci & Technol, Div Phys Sci, Paschim Boragaon 781035, Guwahati, India
关键词
Plasma polymerization process; ion exchange capacity; proton conductivity; thermal stability; EXCHANGE MEMBRANES; FUEL-CELLS; THIN-FILMS; DEPOSITION; HYDRATION; METHANOL; IR;
D O I
10.1007/s12034-014-0717-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work reports the achievement of higher proton conductivity of polystyrene based proton exchange membrane synthesized in a continuous RF plasma polymerization process using two precursors, styrene (C8H8) and trifluoromethane sulfonic acid (CF3SO3H). The chemical composition of the developed membranes is investigated using Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Scanning electron microscopy has been used for the study of surface morphology and thickness measurement of the membrane. The membranes deposited in the power range from 0.114 to 0.318 Wcm(-2) exhibit a lot of variation in the properties like proton transport, water uptake, sulfonation rate, ion exchange capacity and thermal behaviour. The proton conductivity of the membranes is achieved up to 0.6 Scm(-1), measured with the help of potentiostat/galvanostat. The thermogravimetric study of the plasma polymerized membrane shows the thermal stability up to 140 degrees C temperature.
引用
收藏
页码:1613 / 1624
页数:12
相关论文
共 40 条
[21]   Micro-fuel cell power sources [J].
Morse, Jeffrey D. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2007, 31 (6-7) :576-602
[22]   Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells [J].
Park, Dae-Eun ;
Kim, Taegyu ;
Kwon, Sejin ;
Kim, Choong-Ki ;
Yoon, Euisik .
SENSORS AND ACTUATORS A-PHYSICAL, 2007, 135 (01) :58-66
[23]  
Pavia DonaldL., 2001, Introduction to spectroscopy, Vthird
[24]   Review of the proton exchange membranes for fuel cell applications [J].
Peighambardoust, S. J. ;
Rowshanzamir, S. ;
Amjadi, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) :9349-9384
[25]   REACTION-KINETICS IN POLYMERIZATION OF THIN-FILMS ON ELECTRODES OF A GLOW-DISCHARGE GAP [J].
POLL, HU ;
ARZT, M ;
WICKLEDER, KH .
EUROPEAN POLYMER JOURNAL, 1976, 12 (08) :505-512
[26]   Chemical analysis of plasma-polymerized films: The application of X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (NEXAFS) and fourier transform infrared spectroscopy (FTIR) [J].
Retzko, I ;
Friedrich, JF ;
Lippitz, A ;
Unger, WES .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2001, 121 (1-3) :111-129
[27]   TEMPERATURE-DEPENDENCE OF WATER-CONTENT AND PROTON CONDUCTIVITY IN POLYPERFLUOROSULFONIC ACID MEMBRANES [J].
RIEKE, PC ;
VANDERBORGH, NE .
JOURNAL OF MEMBRANE SCIENCE, 1987, 32 (2-3) :313-328
[28]   Ion-exchange plasma membranes for fuel cells on a micrometer scale [J].
Roualdes, Stephanie ;
Schieda, Mauricio ;
Durivault, Laurence ;
Guesmi, Ismael ;
Gerardin, Emilie ;
Durand, Jean .
CHEMICAL VAPOR DEPOSITION, 2007, 13 (6-7) :361-369
[29]   SPECTROSCOPIC AND THERMAL STUDIES OF SULFONATED SYNDIOTACTIC POLYSTYRENE [J].
SU, ZH ;
LI, X ;
HSU, SL .
MACROMOLECULES, 1994, 27 (01) :287-291
[30]   Titanium substrate based micro-PEMFC operating under ambient conditions [J].
Wan, Nianfang ;
Wang, Cheng ;
Mao, Zongqiang .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (03) :511-516