A stable numerical approach for implicit non-linear neutral delay differential equations

被引:36
作者
Vermiglio, R
Torelli, L
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Univ Trieste, Dipartimento Sci Matemat, I-34100 Trieste, Italy
来源
BIT | 2003年 / 43卷 / 01期
关键词
neutral delay differential equations; Runge-Kutta methods; stability analysis;
D O I
10.1023/A:1023613425081
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we consider implicit non-linear neutral delay differential equations to derive efficient numerical schemes with good stability properties. The basic idea is to reformulate the original problem eliminating the dependence on the derivative of the solution in the past values. Our hypothesis on the original equation allow us to study the boundedness and asymptotic stability of the true and numerical solutions by the theory of stability with respect to the forcing term.
引用
收藏
页码:195 / 215
页数:21
相关论文
共 19 条
[1]  
ASHER UM, 1995, SIAM J NUMER ANAL, V32, P1635
[2]   Retarded differential equations [J].
Baker, CTH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) :309-335
[3]   STRONG CONTRACTIVITY PROPERTIES OF NUMERICAL-METHODS FOR ORDINARY AND DELAY DIFFERENTIAL-EQUATIONS [J].
BELLEN, A ;
ZENNARO, M .
APPLIED NUMERICAL MATHEMATICS, 1992, 9 (3-5) :321-346
[4]   On the contractivity and asymptotic stability of systems of delay differential equations of neutral type [J].
Bellen, A ;
Guglielmi, N ;
Zennaro, M .
BIT, 1999, 39 (01) :1-24
[5]  
BELLEN A, 2003, NUMERICAL METHODS DE
[6]  
BRUNNER H, 2000, UDMIRR1500 U UD
[7]  
DAHU G, 1995, BIT, V35, P504
[8]  
Gear C. W., 1971, NUMERICAL INITIAL VA
[9]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[10]  
Hale J.K., 1967, MEM AM MATH SOC, V76